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Summary. Properties of three parameterizations, de- 
noted as the C-model, D-model and Q-model, for covari- 
ances of inbred relatives under assumptions of no link- 
age or epistasis are explored and compared. Additive 
variance in an inbred population with inbreeding coeffi- 
cient F, azr = (1 + F) a 2 , where a 2 is additive variance in 
a panmictic population, if Q-model parameters Qxx and 
Qxy are both zero. Conditions sufficient for this to hold 
are presented in terms of gene frequencies and dominance 
contrasts (homozygotes vs. heterozygotes). Some other 
properties and potential uses of estimates of components 
in the models are also discussed. Estimates of compo- 
nents in the D-model and Q-model were calculated from 
a maize (Zea mays L.) study from which estimates of 
components in the C-model were previously published. 
Of particular interest were the covariance (Qxy) of effects 
of alleles at complete homozygosity with "inbreeding de- 
pression effects", the covariance (D 1) of additive effects at 
panmixia with inbreeding depression effects and the 
within-locus variance (D2, alias Qxx) of inbreeding de- 
pression effects. Estimates of Qxr, DI, and D 2 were small 
and nonsignificant in most cases. For ear height in the 
second year of the study, D 2 appeared to be a major 
component. In some cases, results were obtained which 
had contradictory implications (negative D 2 coupled with 
positive Qxy or D1, and positive D 2 coupled with negative 
ag): A negative estimate of one or the other of a2o or aza 
was obtained in one of the two within-year analyses for 
every character. Problems in getting realistic results were 
thought to be owing to excessive multicollinearity among 
the coefficients of the components in the expectations of 
the covariances of the kinds of relatives included in the 
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study. Implications for future studies of this kind are 
discussed. 
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Introduction 

A general model for genetic variances and covariances of 
inbred relatives with dominance and two-locus epistasis 
contains an inordinately large number of terms and, with 
linked loci, depends on usually unknown recombination 
frequencies (Weir and Cockerham 1977). Consequently, 
practical application must employ models derived under 
simpler assumptions. Parameterizations for the covari- 
ances of inbred relatives under assumptions of no link- 
age, no epistasis and random mating equilibrium in an 
original noninbred population from which the inbred 
relatives were derived have been given by Cornelius and 
Dudley (1975, 1976), Cockerham (1983), Wright and 
Cockerham (1986), and Cornelius and VanSanford 
(1988), the latter two papers developing the same model, 
but with differences in notation and method of deriva- 
tion. Any of these models may be readily extended to 
include terms owing to joint dominance effects of loci and 
additive x additive epistasis as described by Cockerham 
and Matzinger (1985) in a theoretical study of response to 
selection under selfing. Cockerham and Matzinger also 
briefly discuss some issues concerning estimation of co- 
variances for prediction purposes and put out an appeal 
for "more experimental information on these issues". 
Cornelius and VanSanford (1988) showed that the covari- 
ance components are not all estimable if the experimental 
study involves only progenies derived by self-fertilization. 
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Corne l ius  and  D u d l e y  (1976) gave est imates  of  pa ram-  
eters in their  mode l  appl ied to da ta  f rom a b roadbase  

maize  ( Z e a  m a y s  L.) synthet ic  popu la t i on  inbred for 
several  genera t ions  by selfing and  full-sib mat ing.  Objec-  

tives of  this paper  are  to present  es t imates  of  pa ram-  

eters in the mode ls  of  C o c k e r h a m  (1983) and Cornel ius  
and  VanSanford  (1988) (or equivalent ly ,  of  Wright  and 

C o c k e r h a m  1986) ob ta ined  f rom the da ta  of  Cornel ius  
and D u d l e y  (1976) and  to present  some theoret ica l  results 

conce rn ing  proper t ies  of  pa ramete r s  in these models .  The  
mode ls  used by Corne l ius  and  Dud ley  (1975, 1976), 

C o c k e r h a m  (1983), and  the mode l  deve loped  by Corne -  

lius and  VanSanford  (1988) will be referred to as the 
C-model ,  D-mode l  and  Q-model ,  respectively,  the names  

chosen  because the C-mode l  employs  a pa rame te r  

deno ted  as C, the D-mode l  conta ins  paramete rs  D~ and 
D 2 and  the Q-mode l  conta ins  pa ramete r s  deno ted  as Q ~ ,  

Qxy and Qxx.  

Relationships of parameters in the models 

Defin i t ions  and  re la t ionships  of  pa ramete r s  in the covar i -  

ance  c o m p o n e n t  mode ls  are  shown in Table 1. All of  the 

quad ra t i c  c o m p o n e n t s  of  covar iance  are first defined for 
ind iv idual  loci and then  s u m m e d  over  loci. 

Q-model parameters Qy~ and Q~, were developed by Corne- 
lius and VanSanford (1988) as nonnegative quadratic forms in 
vectors of contrasts y and x, respectively, and Q~ as a bilinear 
form. Let Q m ,  Qx~,, and Q~x~ denote the contributions of the ith 
locus to Q~, Qxr, and Q~,  respectively. If there are n alleles, Ix, 
12 . . . . .  I, at the i th lOCUS, and 9~k denotes the genotypic value of 
genotype l f l k ,  then vector y for the i th lOCUS consists of the 
n(n -- 1)/2 contrasts among homozygotes, Y~k = Okk -- g~, (J < k). 
Similarly, x consists of the dominance contrasts (homozygotes 
vs. heterozygote), Xjk = @i + 9kk -- 29ik ,  (J < k). Expressions for 
Q m ,  Q~r, and Q=,i in matrix notation are given in the Appendix. 
When j > k, for convenience we will define Yjk = -  Yk~ and 
X~k = Xk~, but these quantities contribute only once, not twice, to 
vectors y and x, respectively. The expressions for Qyr, Qx~ and 
Qx~ in Table i follow from the structure of the matrices involved. 
Qx~,i is the variance of X.k = Y ~ * k P j X j k ,  Q m  is the variance of 
Y.k = E~,~ p~ Yjk = gkk --  ~ j  P~.g~, and Q~ri is the covariance o f . ~ .  k 

and )7. k . In addition to Q~,  tr~ and/t  2 are also owing to domin- 
ance and, for completeness, expressions for these parameters in 
term of the x's is also given (Table 1). The expression for a 2 
follows from expressions for the dominance deviations (d~) 
given by Kempthorne (1969). 

For later use, let us define the degree of dominance (Com- 
stock and Robinson 1948) of Ij  o v e r  I t a s  ajk = Xjk /y jk  , which is 
positive (negative) if I~ is dominant over (recessive to) I k . By this 
definition, ak~ = Xk/Ykj  = -- ajk. 

Properties of Q~ (alias D2) 

Cornelius and VanSanford (1988) showed that the additive vari- 
ance in an inbred population obtained by a regular system 
of inbreeding beginning with an initial panmictic popula- 
tion is given by a]F = [(1 + F)/2] Qrr - (1 - F) Q~ + [(1 - -  F)2 /  
2 ( I + F ) ] Q ~ .  If Q ~ = Q ~ r = 0  then cr~=Q~/2 and a,]~= 

Table 1. Definitions and relationships of parameters in models 
for covariances of inbred relatives 

Q-model (Cornelius 

Genotypic 
contrasts: 

Quadratic 
functions: 

and VanSanford 1988) 

Y)k = gkk -- g j j ,  Xjk = 9~ + 9kk -- 2 9~k, 

9~k = genotypic value of i th locus genotype I~ I k. 

Q=, = 2 ,  [Y'kPk 2.~ -- .~z.], Ox, = 52, Z k P k  :r.~ .9.k 

Q~,, = 52i 2kPk  y2k, # 2  = 52i .22/4 

ag = 52, [E~P~ (:~.~ -- :~../2) 2 

+ 52~52k>~P~Pk(X~k -- Xq -- s + Y..)2/2] 

where X.k = Y~*kP~X~k, X.. = ~ ,Pk '~ .k ,  

~.~ = 5 2 ~ p ~ y ~  

C-model (Cornelius and Dudley 1975) 

Genotypic 9jk = ]2R "~ (1 - -  (~jk)(OLRj --~ O~Rk + djk ) 
value: 

-~- 3jk (Jl ~(,) "JC ~Xook) 
where 6jk = 0 if j # k, 

3kk = 1 if homozygosity is a result of 
identity by descent, 

3kk = 0 otherwise. 

Quadratic a 2  = ~-~, ~ 'kPk O~2k, ~ 2  = ~-,i~2(,),  

functions: C = 2S~,Y~kPkOtRk~k,  
a 2 2 2 2 2 

= Y~, .~-,kPk ~Rk, ~D = ~,i Y~j Y~kPjPk dig" 

Relationship a2 = Qry, #~ = #2 ,  C = Qyy - Q~r, 
to Q-model: a2 = (Qyy _ 2 Qxy + Q~x)/2, o 2 = a2. 

Relationship ~2 = 2a2 + 4D: + D2,/~2 = i~i, 
to D-model: C = 2 ( ~  + DO, a2 = ~ ,  ~ = ~ .  

D-model (Cockerham 

Genotypic 
value: 

Quadratic 
functions: 

Relationship 
to Q-model 

Relationship 
to C-modeh 

1983) 

gjk = ]l + ~j -~- O~ k ~- djk. 

aZA = 521 52kPk 0~, ag = E l  52j E k P j P k  dj 2 , 

D t = 52i ~kPk  ~k dk~, 

D2 = E,  [52kP~ d l  - (52kPk d~k)2], 

if{ = 52i ( E k P k  dkk) 2" 

a] = (Qyy - 2 Qxy + Q~,x)/2, ag = a~,  

D, = (Qxr - Qxx)/2, 02  = Q~,~, gt = "i. 

if2 2 2 =0" A,o" D = a  2 ,D 1 = 0 . 5 C - o  -2 , 

2 2C + 2a~,l~i 2 D 2 = o - o o - -  = p ~ .  

Wright and Cockerham (1986) Notation for Q-model 

Genotypic 
value: 

Quadratic 
functions: 

Relationship 
to Q-model: 

Same as D-model. 

a~ = Z i  [52kPk (2 ~, + dkk) 2 -- (52kPk dkk)2], 

aMn = 52i [~kPk (2 ~Z k + dki ) dkk -- (52kPk dku)2], 

a~), D* and H* same as Di ,  D 2 and l~I in D-model 

D* Qxx, H*  2 
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(1 + F)Qrr/2 = (1 + F)a~a. If Q~x = 0 then  it mus t  also be t rue 
tha t  Qxr = 0. Fur the rmore ,  Q ~  = 0 if and  only if Qxxi = 0 at  all 
loci. Therefore,  s i tuat ions which give Q~x~ = 0 are of par t icular  
interest.  

W h a t e v e r  the n u m b e r  of alleles per  locus, Qx~ is zero if there 
is no  dominance  at  the ith lOCUS. W h e n  there  are only two alleles 
per  locus, Qxxi = p  ~ p :  (P t - P2) 2 x~2. Clearly, no dominance  and/  
or  p~ = P2 = 0.5 at  every locus are the only c i rcumstances  tha t  
will give Q,:x = 0 if there  are only two alleles at  all loci. 

Wi th  more  t han  two alleles at  a locus, however,  o the r  situa- 
t ions which give Q:,x~ = 0 can occur. It is shown in the Appendix  
tha t  Qxxi = 0 if the ~.k are all equal  and  this fur ther  implies tha t  

Xjk=[2 ~..t<s(l.~C.j) p~pmXtm--(l --2p2) ~_.tr kpzXk~]/pj(1 --2p~) 
(I) 

for some choice o f j  for which  p j  # 0.5, all k # j and  X~m and  x~ 
wi th in  the brackets  are arbi t rary.  The  no ta t ion  l, m =# j should  
be unde r s tood  to indicate tha t  nei ther  I no r  m is equal  to  j and  
l # j ,  k indicates tha t  I is no t  equal  to j or  k. It is also shown in 
the Appendix  tha t  Q ~  = 0 if 

Xjk = C - 2 ~ j . ~ p ~ x  u (2) 

for some choice o f j  such tha t  p;  = 0.5, all k # j ,  where c is an  
a rb i t ra ry  cons tan t  and  Xtm for 1,m # j are such tha t  

~ < ~ ~,,,,* j~ Pt Pm Xtm = O. (3) 

It can be shown by direct subs t i tu t ion  tha t  if (1) holds  for 
some choice of j  for which pj  =~ 0.5, then  it also holds  for all o ther  
choices o f j  for which pj  # 0.5 and  (2) and  (3) also hold  for any 
o ther  choice o f j  for which pj = 0.5. (Note  that ,  if more  t h a n  two 
alleles exist, then there  canno t  be more  t han  one choice o f j  for 
which pj  = 0.5.) Conversely,  if (2) and  (3) ho ld  for some choice of 
j for which p~. = 0.5, this is sufficient to assure tha t  (1) holds  for 
all o ther  choices of j .  Suppose,  for the moment ,  tha t  pj  ~ 0.5 for 
some choice of j .  Then,  if Qxx~ = O, Xjk is given by (1), but,  since 
Xjk = Xkj,XjR is also given by (1) with  subscripts  j and  k inter- 
changed  ifpk # 0.5 or by (2) with  subscripts  j and  k in te rchanged  
i fpk = 0.5. TO il lustrate the expans ion  of( l ) ,  (2) and  (3), let n = 5 
alleles, j = 2, k = 3. Then  (1) gives Xz3 = [ 2 ( p i p  3 x13 + p l p 4 x 1 4  
+ P I P 5  x15 "}-P3P,s X34 + P3P5 x35 + P4P5 x45) -- (1 -- 2pz)  (p lx l3  
+P4X34 + P5 x35)]/p2(1 -- 2P2 ) provided P2 r 0.5 and  also 
x23 = x32 = [2(plP2Xx2 + PlP4Xl . ,  + PlPsX15  + PzP4X24 
+ P2Ps Xz5 + P.,Ps X 4 5 ) - ( 1  - 2p3 ) (Pl X12 + P 4 X 2 4  + P5 X25) ]/ 

p a ( 1 - - 2 P 3 )  provided P3 r  If P3 = 0 . 5  then (2) gives 
x23 = x 3 2 = c  - 2(p~x12 + p 4 x z 4  + p s x 2 s )  and  the cons t ra in t  
(3) is plP2X12 + plP4X~.4 + p x p s x ~ s  + p2P4Xz~ + p2p~x2~ 
+p.,p~ x45 =0 .  Example 1 in Table  2 gives a set of hypothetical  
values for the O~k and X~k which give Q~x~ = 0 if p~ = P2 = 0.1, 
P3 = 0.2, p~ = P5 = 0.3. The hypothetical  values represent only 
one out  of an infinite n u m b e r  of possibilities which will give 
Q ~  = 0, given the gene frequencies and genotypic values of the 
homozygotes  (gij). 

An impor tan t  consequence of (3) is that,  if one pj  = 0.5, and  
Qx~ = 0, then among the x~,, (for l ,m r j ) ,  provided they are not  
all zero, there must  exist bo th  positive and  negative values, i.e., one 
or more  heterozygotes mus t  be such that  the favorable allele is 
dominant ,  but  one or more  other  heterozygotes must  be such that  
the unfavorable allele is dominant .  

Popula t ions  synthesized by the intermating of homozygous  
lines provide impor tan t  special cases in that ,  if one supposes tha t  
each parent  line contr ibutes a different allele to the populat ion,  
then the gene frequencies are known. If  n lines contr ibute  equally 
to such a population,  then t h e p j  are all equal to 1/n. In such a case 
(1) reduces to 

Xjk = [2 Y~'<,,,l~.m*j)X~ -- (n -- 2) ~t* j . k  Xkt]/( n -- 2). (4) 

Example 2 in Table 2 gives a hypothetical  example which gives 
Qxxl = 0 with five alleles all having frequency 0.2. The  X.k are 
obviously all equal and  equat ion (4) is always satisfied if the alleles 
are equally frequent and  the Xjk are all equal  for a l l j  and  k ( j # k ) .  
Example 3 in Table 2 has this property. 

Another  interesting special case is where only one allele 
(the j th, say) shows dominance  (or recessiveness) in combina t ion  
with other  alleles, all other  alleles behaving additively when  in 
combina t ion  with one another.  In this situation, Xjk # O, but  
x u = 0 for all k,l  # j .  It is shown in the Appendix that  in this 
si tuation Qxxi can be zero only i f p j  = 0.5 and it then follows from 
(2) tha t  the Xjk must  be all equal for k =~ j .  Example 4 in Table 2 
has this structure. 

In cases of three  or  four alleles Qxxi = 0 requires cons t ra in ts  
which are no t  necessary with higher  number s  of alleles. Wi th  
three  alleles with all P1 # 0.5, (1) requires tha t  

xjk = Pt (1 -- 2pl  ) W, (5) 

for j ,  k and  l r unn ing  t h rough  all pe rmuta t ions  of the integers 
{1,2, 3}, where w is an a rb i t ra ry  constant .  This  may  be a reason-  
able possibil i ty if all pj  < 0.5. However ,  if any  pj  > 0.5, it would  
require  b o t h  posit ive and  negat ive dominance  contras ts  at  the 
given locus. Equa t ion  (5) implies tha t  if there  are three  alleles 
with  P l  = P2 = P3 = 1/3, then  it is no t  only sufficient, bu t  neces- 
sary, tha t  x12 = x13 = x23. Equa t ion  (5) fur ther  implies that ,  
p rov ided  all pj  # 0.5, if any Xjk = 0 then  Qxx~ canno t  be zero 
unless all Xjk = 0 (i.e., all gene ac t ion is additive). I f p i  = 0.5 for 
a par t icular  choice of j then (2) and  (3) only admi t  solut ions of 
the form Xjk = X~t = C and xu = 0 for k, 1 # j. Popula t ions  con- 
structed from three-way crosses using homozygous  parents  pro- 
vide an interesting application if we suppose that  each of the three 
parents  contributes a different allele to the populat ion.  If  popula-  
tions are developed from each of the three possible three-way 
crosses, Qx~ cannot  be zero in all three populat ions unless all gene 
action at  the ith lOCUS is additive. 

It is shown in the Appendix that  if there are four alleles, then 
Q~,, = 0 if 

xl, . = [(2pz + 2pro --1) W + 2 pipk Xjk]/2 ptp,,, (6) 

for j ,  k, I and m runn ing  t h rough  all pe rmuta t ions  of the  integers 
{1,2, 3,4} and  w = x.i = :~.* = x.t = x.,,. To find a solut ion which  
satisfies (6) it is sufficient to choose  {j, k, l, m} to be  a par t icular  
pe rmuta t i on  of {1, 2, 3, 4}, choose  a rb i t ra ry  values for Xjk, Xj, and  
x j,,,, put  w = ~.j and  compu te  (6) let t ing k, l, m run  t h rough  all 
pe rmuta t ions  of the  subset  of three  integers ob ta ined  f rom 
{ 1,2, 3, 4} by deleting the  integer chosen for j .  I t  can be shown 
by direct subs t i tu t ion  tha t  if (6) holds  for one choice o f j  under  
all pe rmuta t ions  of  k, l and  m, then  it also holds for all o ther  
choices o f j .  Also, ~.j = x.k is easily man ipu la t ed  algebraical ly to 
give 

x j k  = [P,(XK, - -  x j 3  + P , .  (X~m - -  Xj .~)]/(p~ - -  p j )  (7) 

provided tha t  pj  # Pk" If  pj  = p~, then Q~x~ = 0 will require  tha t  
pt(Xkt--Xjz  ) +Pm(Xkm--Xjm ) = 0. If  Pt +Pro = 0.5 then (6) re- 
duces to Xim = PjPk Xjk/PtPm" Consequent ly ,  if p l  = Pa = P3 = P4 
=0 .25 ,  then Qxx~=0 requires xx2 = x a 4 ,  x13 =Xa4  and  
x14 = x23. Finally,  if, for some choice of j ,  Xjk = 0 for all k # j ,  
then  (6) shows tha t  all xl~ , = 0. Thus,  if there  are four alleles and  
one of them is such that  it does not  show d o m i n a n c e  (or 
recessiveness) in combina t ion  with any of the  o ther  alleles, t hen  
Qxxi = 0 if and  only if all gene ac t ion at  the locus is additive.  It  
is clear f rom (5) tha t  this also holds  for n = 3, bu t  it does no t  
necessarily hold  for n > 4. 

Both  Q~x and  a 2 are nonnega t ive  quadra t i c  funct ions  of x 
vectors  for the var ious  loci. As has been noted,  it is possible, 
t hough  perhaps  unlikely, for Q ~  to be zero even if vector  x is no t  
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Table 2. Hypothet ica l  examples with five alleles which give Q~xl = 0 

Examples 1 and 2 

Example  1 above diagonal ;  Qxxi = 0 if p l  = P2 = 0.1, P3 = 0.2, P4 
Example  2 below diagonal ;  Q~x~ = 0 if all pj = 0.2. 

Genotypic  values ~ (@ik) 

Allele I x 12 13 14 I5 

11 24 39 57 71 79 
12 46 48 66 84 92 
13 64 66 72 92 108 
14 70 84 90 96 120 
15 76 96 108 120 120 

: P5 = 0.3. 

Dominance  contrasts  ~ (Xjk) 

Allele 11 12 13 14 15 

11 - - -6  - 1 8  - 2 2  - 1 4  
12 - -20 - -- 12 --24 -- 16 
13 - 3 2  - 12 - 16 - -24 
14 - 2 0  - -24 - 1 2  - - 2 4  
15 --8 - 2 4  - 2 4  - 2 4  - 

Examples 3 and 4 

Example 3 above diagonal ;  Qx~i = 0 if all pj  = 0.2. 
Example  4 below diagonal ;  Q~xi = 0 if P l = 0.5, P2 + P3 + P4 + P5 

Genotypic  values" (gjk) 

Allele 11 I 2 13 14 15 

= 0.5. 

Dominance  contrasts  ~ (Xjk) 

Allele 11 12 13 14 15 

11 24 48 60 72 84 I x - - 2 4  - 2 4  - 2 4  - 2 4 "  
I z 48 48 72 84 96 12 - -24 - - -24 --24 --24 
13 60 60 72 96 108 I 3 - -24 0 - - -24 --24 
I~ 72 72 84 96 120 14 --24 0 0 - -24 
I s 84 84 96 108 120 15 - 2 4  0 0 0 - 

a Addi t ion  of  any constant  to the genotypic  values and multiplication of  the genotypic values and the dominance  contrasts  by any 
6onstant  also gives Qx~ = 0 

zero. On  the other  hand,  a~ cannot  be zero unless x is zero at all 
loci. Is it possible (or likely) for Q ~  to be larger than a2? This 
appears  to be a difficult quest ion to answer in multiple allelic 
situations, but with two alleles at the i th locus, the contr ibut ion 
of  the i th locus to a 2 is cr~i 2 2 2 = p l P 2 X 1 2  . Compar ing  this to 
Q~xi = p i p 2  (Pl - P 2 )  2 x22, it is apparent  that  Q~,i and a2 i are 
equal if p l  P2 = (Pl - -P2)  2 = 1 -- 4p l  P2 which is satisfied if either 
Pl  or  P2 is (1 + 1 / ~ ) / 2  : 0.7236; Q,xi will be the larger if either 
P l  orp2  exceeds this value and a~i will be the larger if bo th  p l  and 
P2 are less than  0.7236. When  Q~** = a2~, both  are equal to 
0.64 x22 . Set Q~,i/a21 = r. Then Pl  = 0.5 {1 _+ [r/(r + 4)] 1/2 }, P2 is 
the same expression with a reversal of  the _+ sign, and the 
absolute value of p l  - P 2  is [r/(r + 4)] 1/2. Thus, if there are only 
two alleles per  locus and r = Q,~/a 2, then [r/(r + 4)] x/2 might  be 
viewed as an est imate of  the "average" absolute difference in 
gene frequency between dominan t  and recessive alleles. 

Cornel ius and Dudley (1976) noted  that, with two alleles 
per locus, (~_.pqx2/~__.,pqy2) 1/2 where p = P 2 ,  q = P x ,  and the 
sums are over loci, gives an est imate of average degree of  
dominance.  In Q-model  notat ion,  this can be expressed as 
[(Qx~ - 4 a2)/Qry] 1/2. In the case of  two alleles per locus, trzo = 1~1 
(alias la~), and in such a si tuation presumably  the best estimate 
of a 2 for use in this formula or the previous formula for r will be 
obta ined by combining the terms in these componen t s  in the 
expectat ions of the empirical covariances used for estimation. 

Properties of Qxy 

Any expression for the covariance of inbred relatives must,  ex- 
cept under very special condit ions,  contain  a componen t  which 

includes the contr ibut ion of  the products  of the x's and the y's. 
D 1 serves that  purpose in the D-model  and C does so for the 
C-model.  Both of these are functions of  Qxy along with another  
component  and Qxy itself may be the more  interesting compo-  
nent  since it alone measures the association of  x and y values. 

If we characterize the quanti ty dkk -- ZkPk  dkk (where dkk is 
the dominance  deviation of  I k I k at panmixia) as the within-locus 
"inbreeding depression effect" of the ith allele, then Qxy is the 
eovariance of  effects of alleles at complete homozygosi ty  with the 
inbreeding depression effects of those alleles. The correlat ion of 
such effects is Qao~ = Q~,y/(Qrr Qxx) 1/2. This same quanti ty is the 
correlat ion of the :Lk with the 37. k. 

Q~y is necessarily zero if Qx~ = 0, but  Qxy may be zero 
even if Qxx # 0. If there are only two alleles at the i th locus 
Qxyi=plp2(p l -p2)  x t zy12=plp2(p l -p2 )a12y22  which is 
zero if any one of the following hold: (1) there is no dominance  
(x12 = 0), (2) there is overdominance with homozygotes hav- 
ing equal value, (911 = 922 ~ 912 resulting in Y12 = 0, X12 ~ 0), 
(3) gene frequencies are 0.5 (,01 --P2 = 0). Qxyi is positive if the 
dominant  gene is the more frequent and is negative if the domi- 
nant gene is the allele of lesser frequency. Clearly, both positive 
and negative values of Q~,yi could occur at the various loci even 
if all loci have similar directions and degrees of  dominance.  Thus 
Qxr = 0 would not  necessarily imply any of the situations which 
make Q~yi = 0. 

With  respect to a single locus with two alleles the correlat ion 
Q,,y~/(Qyyi Q~xi) 1/2 is _+ I with the sign determined by the sign of 
Qxy~. We might loosely interpret  Qa~o as a sort of average of  these 
correlat ions for segregating loci ("loosely" because pooling the 
componen t s  for all loci and then comput ing  the correlat ion is 
not  equivalent to a simple averaging of  the correlations for the 
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loci separately). A positive value of 0a~o would be expected if 
dominant alleles tend to be more frequent than recessive alleles. 

If there are two alleles at all loci with the same pair of values 
for p~ and P2 (Pl :~P2), a situation for which one could easily 
develop a population to satisfy, then the correlation 0a~ is 
- ~ - ~ , X 1 2  Y 1 2 / ( ~ y 2 2  ~-~X22) 1/2 where the sums are over loci and the 
sign is determined by the sign of pl  - P 2 .  If P1 > P2,  Qd~ may be 
interpreted as the correlation of the x contrasts with the y con- 
trasts. The correlation can still be either positive or negative 
because, for the i t~a locus, x12Y12 = a12 y2 2 which is negative if 12 
is dominant  ove r /1 .  Using a population constructed from two 
homozygous parents represented in different dosages, this statis- 
tic might give some insight into which parent carries more of the 
alleles which are dominant  (or at least more of the dominant  
alleles at loci which have large dominance effects). Presumably, 
if one wishes to do this, one should choose Pl and P2 so as to 
maximize the absolute value of P l P z ( P l - P 2 ) .  This gives 
Pl = 0.5 _+ 0.29. This is closely approximated in populations 
derived from backcrosses where Pl = 0.75 and P2 = 0.25 or vice 
versa. If populations derived from reciprocal backcrosses are 
studied, Qxr should be of the same absolute magnitude in both  
populations, but should differ in sign. 

With more than two alleles, expansion of Q~y~ = 5Zkp k ~.k )7.k 
gives 

Qxrt = E j  < kP-iPk (Pj --  Pk) x-il Y-ik (8) 

-I- ~_.,-i < k < l P j P k  Pt  [Y-ik (Xkl - -  X it) -}- Y jr (Xkt - -  Xjk) q- Ykt (Xjt - -  Xjk)]" 

The quantities PjPk (Pj  - -  Pk)  Xjk YjIr are all zero if gene frequencies 
are all equal. As in the case of only two alleles, these quantities 
are positive (negative) if the dominant  allele of the pair (Ij ,  Ik) is 
the more (less) frequen t. All terms in Qxri are zero if there is no 
dominance (x-i k aU zero) or if homozygotes are all of equal value 
(Y-ik all zero). The difference x u  - xjz = (Okk - -  V j j )  - -  2(gk/ - -  ~jl)" 
This is a contrast  of the double substitution of allele I k for allele 
lj in the homozygous state compared to 2 single substitutions in 
the presence of allele I t. The other differences x u - X j k  and 
x j r -  Xjk are structured similarly with a permutat ion of sub- 
scripts. The second sum of terms in (8) is zero if such quantities 
are all zero. Q~rt could be small (or even zero) through the 
cancellation of positive and negative quantities. Furthermore,  as 
in the case of two alleles, positive and negative Q~yi values could 
cancel in the summation over loci which gives Q~y. 

Clearly, unless one has prior knowledge of the number  of 
alleles and their frequencies, little can be concluded from an 
experimentally estimated value of Q~y, particularly if the es- 
timate is of small magnitude. A large positive Q~y might suggest 
that  the dominant  alleles are present in fairly high frequency (but 
not extremely high because Qxri approaches zero as the frequen- 
cy of any allele at the ith lOCUS approaches unity). Negative Q~y 
would suggest that  such alleles are in low frequency. 

Other properties of parameters in the models 

If Q ~  = 0, then D 1 = 0, but it is possible to have D 1 = 0, even if 
Q ~  ~ 0. Let dll = (Q~ri -- Qxxt)/2 and a~zi = (Qrrt - 2 Q~,i 
+ Qx,a)/2 denote the contributions of the i th locus to D 1 and try, 
respectively. With two alleles per locus and letting xa 2 = al 2 Y12 
we can write dl l  = ( l / 2 ) p l p  2 [I - (Pl - P2)a12] (Pl - P 2 ) a t 2  Y~2. 
If the quantity 1 - (Px  - P 2 ) a 1 2  = 0 then the additive effects (at 
panmixia) are zero and dai is zero as is also ~r~i. This requires 
overdominance equal to a12 = 1/(/91 - P 2 )  and is unlikely to oc- 
cur except in hypothetical examples. The dlt values for the vari- 
ous loci can be positive or negative so that  D 1 can also be zero 
as a result of cancellation of positive and negative values when 
summed over loci. Of interest, therefore, are the situations which 
yield dl~ > 0 and those where d~t < 0. In particular, dti > 0 in 

two situations: (1) Pl >P2  and 0 <  alz < 1/(p 1 - P 2 )  and (2) 
Pl < P2 and - 1/(pz - Pl) < a l z  < 0. Thus, if the dominant  allele 
is the more frequent, da~ will be non-negative unless there is 
overdominance of sufficiently large magnitude (degree of domi- 
nance greater in absolute value than the reciprocal of the differ- 
ence between gene frequencies). The exception includes the case 
where 911 = g22 r 912. A negative dli will always occur if the 
recessive allele has the higher frequency. (In this regard, note that  
any situation which gives a negative Qxyt must necessarily give a 
still more negative dli ). 

If or to what extent these properties of D 1 hold in multiple 
allelic situations is not easily assessed since dlt involves all of the 
[n(n -1 ) /2 ]  2 possible products of the form XjkyZ,,(j  < k , l  < m) 
and all squares and pairwise products among the x-i k. It is always 
true, however, that  D 1 < (1/2)Qxr with equality only if Qxx = 0, 
which will require that D 1 = Qxy = 0 (but DI = 0 or Q~r = 0 does 
not imply that  Qxx = 0). 

Though it is not likely to occur in any experimental or 
breeding population, tr~ ( =  Qyy) = 0 would imply that  effects of 
genes at complete homozygosity are all zero. For  the i th locus, in 
D-model notat ion for gene effects (Table 1), we would have 
2 c~-i + (d-i-i - hi) = 0 where h i = •jp-id-ij.  In this very hypothetical 
situation, Qx~ = 2 tr] and O 1 = -- a~. Thus, - ~2 places a lower 
limit on D1, which can be reached only if all homozygotes are of 
equal value. 

In any case, D 1 and Qx~, (alias D2) are  highly dependent on 
gene frequencies and their usefulness would be greatly enhanced 
in situations where one knows the number  of alleles and their 
frequencies a priori (as in the case of a population constructed 
by the mating of homozygous lines). In the absence of such 
knowledge, estimates of D~ and Q ~  may, if the estimates are 
large, give some information (though that information is far 
from clear) concerning the genetics of the character under in- 
vestigation. If the estimates are small, they are virtually nonin- 
formative, since a myriad of circumstances can operate to make 
them small. 

The correlation of inbreeding depression effects of alleles 
with additive genetic effects at panmixia is given by 
Oaa = D 1 / ( D 2  0"2/2) 1/2- Another correlation which may be inter- 
esting is that  of additive effects of alleles at panmixia with effects 
of those alleles at complete homozygosity, i.e., 
0,,~ = C/(2 ~r] a~) 1/2. For a single locus with two alleles, bo th  of 
these correlations are _ 1 with the sign of the first depending on 
whether the quantities (Pl - P 2 ) a 1 2  and 1 -  (Pl - p 2 ) a ~ 2  are of 
like or unlike sign, and the sign of the second determined by the 
sign of 1 - (Pl - P 2 ) a 1 2  �9 A negative value of 1 - (Pl - p 2 ) a a 2  
results only if the dominant  allele is the more frequent and there 
is overdominance of sufficient degree that  l a121 > 1 / I p l -  P21. 
These same conditions will cause 1 - ( p l - p 2 ) a 1 2  and 
( P l - p 2 ) a 1 2  to differ in sign. Furthermore,  they will always 
differ in sign if the recessive allele is the more frequent. As with 
the correlation Qa~ which we have previously discussed, we 
might cautiously regard a computed correlation as a sort of 
average of these correlations for separate loci. 

Estimates of D 1 , Qxx (alias D2)  and Qxy 
in a maize population 

Resul t s  of a n  e x p e r i m e n t  e v a l u a t i n g  va r i ous  k i n d s  of  

i n b r e d  re la t ives  de r ived  by  selfing a n d  full-sib m a t i n g  in  
a b r o a d - b a s e  m a i z e  p o p u l a t i o n  (Syn the t i c  O.P.)  were  re- 

p o r t e d  b y  C o r n e l i u s  a n d  D u d l e y  (1974, 1976). Exper i -  
m e n t a l  m a t e r i a l  a n d  m e t h o d s  were  desc r ibed  prev ious ly .  

A p a t h  d i a g r a m  of  the  m a t i n g  s c h e m e  by  w h i c h  famil ies  
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of progenies were produced is given in the 1976 paper  
which also gives expressions in C-model  parameters  for 
the genetic covariances among the progenies derived by Year 
selfing and covariances of the selfed progenies with the 
progenies derived by sib-mating. Covariances among the 
s ib-mated progenies were derived in C-model  parameter-  
ization by Cornelius and Dudley  (1975). (The coeffi- 
cient of C in the covariance of generat ion-I  uncle and 
generation-2 nephew is erroneously given as 0.625. The 1970 
correct  value is 0.0625.) Families  were al located to sets in 1971 
a spli t-plot  arrangement  and Cornelius and Dudley C~ 
(1976) presented estimates of 2 2 a ~ ,  /1~, a~t and a~ com- 
puted by applying the method described by Cornelius 
and Byars (1977) to family within set, error  and, for char-  1970 

1971 
acters where individual  plants  were measured,  plants  Combined d 
within plots mean square and cross product  matrices. 
The purpose  of the present analysis is to present the 
estimates of D1, Qxx (alias D2) and Q~y (Table 3) from 1970 
these data. These estimates and their s tandard  errors 1971 
were computed by simple transformations of the previous- Combined a 
ly computed  solutions. F o r  example, if we let �9 -- (~roo2, 

2 po~,C, crza, az) ', then b l = K ~ ,  where K = ( 0 , 0 , 0 . 5 ,  
- 1, 0), and V(D0  = K V(~)  K' ,  where V(~)  is the esti- 1970 

1971 
mated  covariance matr ix  of ~ .  The estimates of compo-  Combined d 
nents from the original s tudy are also included in Table 3 
for compar ison  with D 1 , Q~x and Q~y. 

Cornelius and Dudley (1976) repor ted  that  all charac- 1970 
ters except kernel weight showed significant hetero- 1971 
geneity of variance between years, which, however, was C~ 
not  resolved with respect to whether it was genetic (i.e., 
genotype • year  interaction), environmental  or both. I t  
was not  feasible with the available mater ial  to design the 1970~ 1971 e 
experiment so that  estimates of interactions of the qua- Combined 
drat ic  components  of genetic covariance with years could 
be easily obtained.  Therefore, the estimates from years 
combined are a sort of average for the two years, which 
in some cases may be averaging estimates of unequal  
parametr ic  values. 

The most  striking results, in par t icular  the large es- 
t imates of the dominance components  #~ (alias FI) and  
a~ for yield and the large estimate of #~ for plant  and ear  
height in 1971, have been previously discussed (Cornelius 
and Dudley  1976). Of interest at present are the estimates 
of Qxy, D~ and Q ~ .  Mos t  of these estimates, when com- 
pared with their asymptot ic  s tandard  errors, were small 
and could hardly  be considered statistically significant. In 
absolute  value, Qxr exceeded 1.96 times its s tandard  error  
(the 0.05-level test cri terion based on asymptot ic  normal-  
i ty of the estimates) only in the case of ear  height in 1970. 
However,  this was accompanied by a negative estimate of 
Q ~ .  If Q ~  = 0, this implies that  also Q~y = 0. It, there- 
fore, makes  sense to test the hypothesis  Q~r = Q ~  = 0, or 
its equivalent in the C-model  (az  = C = 2a~)  or  the 
D-model  (D1 = D2 =0) .  An approximate  chi-square 
(Table 4) computed  from the parameter  estimates and 

Table 4. Approximate chi-square tests of hypotheses concerning 
covariance components 

Chi-square a for test of hypothesis 

Ho~:  Ho2:  Hoa and No 
Q~,y=Q~ =0 b 2 2 / ~  = 0" O Ho2 c dominance 

Plant height 

0.41 0.82 0.82 0.82 
1.63 4.38 * 5.59 19.60 ** 
2.18 6.52* 8.12" 17.43"* 

Ear height 

4.28 1.59 4.30 11.75 * 
13.34"* 11.34"* 25.60** 30.59** 
9.39** 11.81 ** 16.80"* 35.82** 

Yield 

0.44 1.13 7 .11  25.60** 
1.53 0.56 8.17 * 42.26 ** 
1.69 2.63 16.37 ** 75.78 ** 

Moisture 

0.19 3.52 6.03 6.05 
3.55 0.68 9.03 * 9.43 
2.01 3.73 12.19 ** 12.26 ** 

Oil 

0.21 1.85 2.63 3.66 
0.16 0.06 0.67 3.91 
0.03 1.12 2.82 6.94 

Kernel weight 

2.01 0.15 2.15 2.17 
1.47 0.79 8.63 * 8.71 
0.27 0.77 2.53 2.63 

*,** Significant at p = 0.05 and 0.01, respectively 
a Df of chi-square is 2, 1, 3, and 4 for the four hypotheses 

2 = C = 2cr~ in the C-model or D 1 = D 2 = 0 in b Equivalently, a~ 
the D-model 
c Equivalently, p~ = P2 = 0.5 at all loci where there is dominance 
d Cornelius and Dudley (1976) reported significant heterogeneity 
between years not resolved as to whether it was genetic or envi- 
ronmental 
e C-model showed significant lack of fit to within-year data (Cor- 
nelius and Dudley 1976) 

their asymptot ic  covariance matr ix  indicated that  the 
hypothesis Qxr = Qxx = 0 was an acceptable hypothesis  
in all cases except ear  height in 1971 and in the analysis 
with years combined. Qxy = Q ~  = 0 implies that  D 1 = 0. 
Examined separately, Dx and 0 2 (alias Q~)  (Table 3) were 
also nonsignificant in all cases where Qxr = Q ~  = 0 was 
an acceptable hypothesis. 

If there are only two alleles at all loci where there 
is dominance,  #2  = a~. Approx imate  chi-square tests 
(Table 4) indicated that  this hypothesis  was acceptable in 
all cases except plant  and ear  height in 1971 and in the 
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combined analysis. Cornelius and Dudley (1976) also 
tested this hypothesis,  but  they used a different criterion, 
namely, by compar ing  goodness of fit of multiple-allele 
and two-allele models. The conclusions rendered by the 
two methods were consistent except for yield in the 
combined analysis where Cornelius and Dudley found 
the multiple-allele model  to fit significantly better. 
Qxy = Qx~ = 0 a n d / ~  = ~ joint ly  imply that  gene fre- 
quencies are all 0.5 at loci where there is any dominance. 
However,  separate acceptabil i ty of these two hypotheses 
does not  necessarily imply that  they are joint ly  accept- 
able. Indeed, they were separately, but  not  jointly, accept- 
able for yield and moisture in 1971 and years combined 
and for kernel weight in 1971. Where  the no epistasis 
model  gave a satisfactory fit (not the case for kernel 
weight in 1971), separate, but  not  jo int  acceptance of the 
hypotheses Q~y = Q ~  = 0 and #2  = cr2 implies that  the 
da ta  are consistent with either of two conclusions con- 
cerning loci where there is dominance:  (1) there are two 
alleles per  locus and gene frequencies are not  0.5, or (2) 
there are multiple-alleles, but  Q~y = Q~x = 0 (or at least 
close enough to zero to escape detection). Either conclu- 
sion is a distinct possibility, but the first would seem to be 
the more  likely, as it was previously made clear that  gene 
effects must  satisfy severe constraints in order  for Qx~ to 
be zero in multiple-allelic situations. 

Synthetic O.P. is a composi te  of open-pol l inated cul- 
tivars and there is little reason to believe gene frequencies 
are all exactly 0.5 even if such a hypothesis is statistically 
acceptable.  The hypotheses Q~y = Q~x = 0 a n d / t  2 = e2 
will always be jo int ly  acceptable if there is no dominance 
(or not  enough to be statistically detectable). This is, ap- 
parently,  true for percent oil in both years and for mois- 
ture in 1970. They will also be joint ly  acceptable if there 
are two alleles per  locus, but  loci where there is domi- 
nance with respect to effects on the character  studied do 
not  have gene frequencies sufficiently different from 0.5 to 
make Q~y and /o r  Qxx sufficiently large to be statistically 
detectable. This may be the si tuation for ear height in 
1970. 

F o r  ear  height in 1971, Q~x was the largest compo-  
nent, Q~y was negligible and D 1 was negative and signifi- 
cant  owing, of course, to the contr ibut ion of Q~x to D~. 
However,  a negative estimate was obtained for ~z o and 
this is inconsistent with large values for Qx~ and ~2 .  If the 
negative a~, is regarded as an estimate of a true value of 
zero, this would imply that  both ~2 and Q ~  must  also be 
zero which would further imply that  all gene action is 
additive. However,  an addit ive model  does not  adequate-  
ly model  the variances and covariances (Table 4). 

With  two exceptions estimates of 0doo (Table 5), where 
they could be computed,  were of small magnitude.  In 
some cases estimates of Qd~ and ~da could not  be com- 
puted owing to a negative estimate of Qxx. If this is re- 
garded as an estimate of Qxx = O, this implies that  

Table 5. Correlations of effects computed from covariance com- 
ponent estimates 

Character Correlation 

Year Qd~ ~o~ ena 

Plant height 1970 -2.68 1.01 -2.38 
1971 -0.04 0.74 -0.70 
Combined -0.10 0.84 - 1.58 

Ear height 1970 -"  1.54 a 
1971 --0.02 0.45 --1.11 
Combined -0.21 0.72 - 1.11 

Yield 1970 1.03 1.23 1.44 
1971 a _, _, 
Combined -"  _a _a 

Moisture 1970 --0.18 0.97 --0.44 
1971 -"  1.42 _a 
Combined -"  1.20 a 

Percent oil 1970 _a 1.04 _a 
1971 -" 1.08 _a 
Combined - ~ t.02 _ a 

Kernel weight 1970 0.28 0 .69 --0.51 
1971 _a 1.32 -"  
Combined 0.26 0 .93 -0.14 

a Negative component in denominator 

Pdoo = Qd, = 0. With  one exception, estimates of Cda, 
where they could be computed,  were negative. Usually 
they were more negative than Qdoo. Estimates of ~,oo, 
wherever they could be computed,  were positive and gen- 
erally large, but  they were not  as large for plant  and ear  
height (characters which showed inbreeding depression) 
in 1971 and years combined as for some of the other  
characters. Moisture  and percent oil, for which a strictly 
additive variance model  gave an adequate  fit (Cornelius 
and Dudley 1976) gave results consistently suggesting 
Q~oo = 1. No estimate of Qaoo could be obtained for yield 
in 1971 and years combined owing to a negative estimate 
of ~r 2 . The estimate of a 2 for yield in 1970, though posi- 
tive, was extremely small and it is quite probable  that 
Qa~ = 1.23 is spuriously large as a consequence. N o  at- 
tempt  was made to compute s tandard errors for the cor- 
relations, but they are no doubt  high, especially for Qn, 
where there is the greatest intercorrelat ion among the 
estimated components  involved. 

The results perhaps shed more light on the problems 
involved in at tempting to estimate the quadrat ic  compo-  
nents than on the genetics of the populat ion in which they 
were obtained. The s tandard error  of Qxx seems in many 
cases to be large relative to the apparent  magni tude of the 
component  being estimated, suggesting that the set of 
relatives used does not have nice propert ies for estimating 
Qx~. This may be owing to multicoll inearity in the expec- 
tat ions of the mean squares and products.  Cornelius and 
Dudley (1976) suggested that the correlat ion of the coeffi- 
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cients of a 2 and azo in the C-model for the covariances 
among relatives evaluated in the experiment was suffi- 
ciently high to result in difficulty in obtaining a realistic 
separation of the variance attributable to a~ and to a t .  
Such a situation easily triggers negative estimates of one 
or the other component  because it is quite possible for an 
overallocation of variance to one component  to be easily 
rectified (in terms of adequacy of fit of the model to the 
data) by negative allocation of variance to the other. 
A negative estimate of one or the other of these two 
components (usually of a t ,  but of a~ in one case, namely, 
yield in 1971) was obtained in one of the two within-year 
analyses for every character. A similar multicollinearity 
problem (if this is indeed the cause) exists regardless of 
whether the C-, D-, or Q-model is used, since all of these 
models have the same set of coefficients for ~r 2 and there 
always exists a linear combination of the other coeffi- 
cients in the D- or Q-model which is equal to the coeffi- 
cient of a2 in the C-model. 

In the Q-model the correlation of the coefficients of 
Q~  (alias D2) and a 2 is the same as the correlation of the 
coefficients of a 2 and a 2 in the C-model. Thus, the prob- 
lem of separating (r 2 from a ]  (which is a function of Q~)  
appears to be, more fundamentally, a problem of separat- 
ing a 2 and Q~.  A high correlation of coefficients of a 2 
and Q ~  in the Q-model manifests itself in the D-model as 
a high degree of multicollinearity involving the coeffi- 
cients of a~, a ] ,  D 1 and D 2. 

Statistical joint significance of the hypotheses 
Q:,y = Qx,,  = 0 and/~2 = a t  without significance of either 
hypothesis when tested alone can also be a consequence 
of multicollinearity. It is analogous to a multiple regres- 
sion problem where one or the other of two highly corre- 
lated regressor variables is needed in the model, but 
neither explains a significant amount  of variation when 
added to a model which already contains the other. 

The lesson to be learned is that anyone who wishes to 
devise a study to estimate these components would be 
well advised to determine whether the set of relatives to 
be used provide covariances with desirable properties for 
estimation of the components or at least of the desired 
linear combinations of components. Besides predicting 
response of highly inbred progenies resulting from selec- 
tion of progenies in earlier generations of inbreeding, 
which could be done quite well from their study, Corne- 
lius and Dudley (1976) attempted to use the estimates of 
the components to predict improvement in response of 
outbred performance resulting from selection of inbred 
performance and vice versa. Cockerham and Matzinger 
(1985), using an extension of the model to include 
additive • additive epistasis, made some theoretical pre- 
dictions of response, in terms of outbred performance to 
selection based on performance of selfed progenies. They 
also briefly discussed whether estimated response to se- 
lection should be done with the needed variances and 

covariances directly estimated or indirectly estimated 
through the use of estimated components. It is to be 
remembered that estimation of a covariance as a linear 
combination of estimated components,  where the combi- 
nation is considerably different from any of the experi- 
mentally obtained covariances used in estimating the 
components,  presents a situation very much analogous to 
extrapolation of a regression model to a point outside the 
range of data to which the model was fit (or, more precise- 
ly, outside the hyperellipse which contains the experi- 
mental data points). Such projections can be notoriously 
inaccurate even when the model is correct. Predictions of 
outbred performance based on inbred performance or 
vice versa involve linear combinations of a ]  and C (or 
equivalently, a~ and D 1 in the D-model, or Qry, Qxy and 
Qxx in the Q-model) for the numerator  and, for the latter 
case, a ] ,  as the only genetic component  involved in the 
denominator  of the relevant heritability (b~y of Cocker- 
ham and Matzinger 1985). These are going to require a 
precise estimate of a,]. The experimental results of Corne- 
lius and Dudley (1976), considered again here, suggest 
that satisfactory separation of a ]  and a t (or of Q ~  and 
crt) is the greatest difficulty to be surmounted in estimat- 
ing the components from data on inbred relatives. F rom 
selfed progenies alone these components are not estima- 
ble at all (Cornelius and VanSanford 1988). In the Corne- 
lius and Dudley (1976) study, inclusion of families of 
non-inbred full sibs which were collateral relatives with 
the sib-mated and selfed inbred progenies did not seem to 
satisfactorily alleviate the problem. Inclusion of unilater- 
al relatives would give covariances which depend only on 

2 (or ~r 2, D 1 , and 0 2 in the D-model, or Qry, a~, C and a~ 
Q~y and Qx~ in the Q-model) and would help to separate 
these components from ~r~ a n d / ~  (alias l~I). Most  impor- 
tantly, if an estimate of Cr2A free of a t is needed, the inclu- 
sion of noninbred relatives whose covariance depends 
only on aZA would be highly desirable. 
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Appendix 

The quadratic forms Qyy~, Q~r~ and Q ~ ,  derived by Cornelius 
and VanSanford (1988) expressed in matrix notation are 
y '  R '  Px R y , y '  R '  P 1 T  x and x '  T '  P x T x ,  respectively, where 
P1 = Diag(pj). In the jth row of matrix R, the element which 
multiplies Yz,. in the product Ry is 6j,,,p, -- 6jtp,,, where 6j,, = 1 
if j = m and is zero otherwise (6jz similarly defined). Also, the 
element in the jth row of T which multiplies xt, . in the product 
T x  is T~(z,,) = 6j~p,, + ,Sj,,p~ -- 2p~p, , .  Vector Ry is a vector of 
additive effects of alleles in a completely homozygous population 
and vector T x  is an expression for the dominance deviations (at 
panmixia) of homozygotes, dj~, expressed as a deviation from a 
mean defined as h i = ZjPj djj. Consequently, Qry is equivalent to 
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cr 2 in the  C-mode l  and  Qx~ is an  a l ternat ive  express ion for D 2 in 
the D-model ,  bu t  Qxy is un ique  to the  Q-model .  Q~r is, in a sense, 
the  covar iance  of  d o m i n a n c e  devia t ions  of  h o m o z y g o t e s  at pan-  
mixia  with the  addi t ive effects of  the  same  alleles in a complete ly  
h o m o z y g o u s  popula t ion .  

A n o t h e r  in te rpre ta t ion  of Qry, Qx~, and  Q ~  is ob ta ined  by 
us ing  the  re la t ionships  Ymt = - Ytm and  Xml = X~m and  then  no t ing  
tha t  the  k th e lement  of R y  is 37. k = Y~j*kPjYjI,, and  the k th e lement  
of  T x  is X . k -  Y~kPkX.k �9 Consequen t ly ,  X.k and  dkk differ by an  
addi t ive cons t an t  and  Qyr and  Q~x are s h o w n  to be the  var iances  
of  the  37k and  Y.k, respectively, and  Q~r is their  covariance.  

Q ~  = 0 if and  only if T x  = 0. But  T x  = 0 if and  only if the  
2.j are all equal.  Thus ,  to de termine  the  condi t ions  unde r  which 
Qxx~ = 0, it is sufficient to consider  any  set of  n -  1 l inearly 
independen t  cont ras t s  a m o n g  the if.i" Let us  consider  the  con-  
t ras ts  ej = :~.j -- x-n, J = 1, . . . ,  n -- 1. Collect ing the e i into a 
vector,  we can  write e = S x  where  the  e lement  of  the 
(n - 1 )  x n (n - 1 ) / 2  mat r ix  S which mult ipl ies  Xtm (l < m) in the 
p roduc t  S x is p,, (6az - 6nZ) + Pt (6j= -- 6.=). If the  e lements  xt, . in 
x are sor ted  by m within  l, t hen  

X = [X12 X13 . . . X l ( n _ l )  Xln X23 X2(n_l)  

Pl 0 . .  0 -- Pl  P3 - �9 P , -  1 

S =  Pl  -" 0 - - P l  P2 " 0 
�9 : : : �9 

0 ..  P l  - - P l  0 . .  P2 - -P2 

Thus ,  Qx~ = 0 for any  x which  satisfies the  set of  h o m o g e n e o u s  
l inear equa t ions  S x = 0. Obviously ,  x = 0 (the "trivial" solu- 
tion) is a lways a solut ion,  i.e., Qx~ = 0 if there  is no  dominance  
at the  ith locus. 

If n = 2 ,  then  S x  = ( P 2 - p 0 x ~ 2  so tha t  no  dominance  
(x12 = 0) or  equal  gene frequencies ( P 2 - P l  = 0) are the  only 
condi t ions  which  will give Q=i = 0. However ,  if n > 2, S always 
has  more  c o l u m n s  t han  rows and  S x = 0 always has  a nontr ivia l  
so lu t ion  for x. 

If we express  S x  as  [ S 1 S 2 ] x = S 1 x I - [ - S 2 x  2 where 
x 1 = [Xm2,X13 . . . . .  x l ,  ] ' and  x 2 = [x23,x2~ . . . . .  x t ,_l)n] ' ,  then  
S x = 0 implies tha t  xl  = S~- 1 $2 x2 provided  tha t  Pl  # 0.5 (Si is 
s ingular  if Pl  = 0.5). 

C o n s i d e r  again the equation S 1 X 1 -~- S 2 X 2 = 0 a n d  s u p p o s e  

tha t  x z = 0. T h e n  the equa t ion  S x  = 0 reduces to S 1 xx = 0. A 
nontr ivia l  solut ion for x 1 exists if and  only if S,  is s ingular .  But, 
since Pl  # 0 (else the  n u m b e r  of  alleles is n - 1 ra ther  t h a n  n), S 1 
is s ingular  only if P x = 0.5�9 Thus ,  if the  only he terozygotes  which 
show dominance  are those  which involve the  allele I , ,  then  Q ~  
can be zero only i f p t  = 0.5. 

Wi th  three alleles, equa t ion  (1) gives 

X12 = [ 2 p 2 P 3  X23 --  (1 - -  2pOps  X23] /p l  (1 - -  2 p O  

= p3 (2p2 -- 1 + 2pl)x23/P 1 (1 -- 2 p 0  

= P3(l  -- 2P3 )x23/p 1 (I -- 2P l  ) 

and,  similarly, x 13 = P2 (1 - 2p2 ) x23/P 1 (1 - 2p, ) ,  with x23 arbi- 
trary,  as a solut ion for x which gives Q ~  = 0. In  general,  we see 
tha t  Xjk/Xj~ = p~ (1 -- 2 Pl)/Pk (1 -- 2 Pk) for j ,  k, l any  p e r m u t a t i o n  
of the  integers 1, 2, 3. This  result  establ ishes (5)�9 

Pl ( 1 -  2 p l  - -P2)  - -P3  ' ' '  

P l  - -  P2 (1 - 2 p l  - P3) ' '  �9 

1 : : " 
S I - 1  p l ( 1 - -  2p l )  Pl - -P2 - -P3 " '" 

Pl  - -P2 - -P3 �9 " 

P~ - - P 2  - - P 3  ' ' '  

and,  with algebraic man ipu la t ion ,  

Xlk = [2 ~,l<,,,tt,,,,~ l)plp,,,Xtm -- (1 -- 2p l  ) Z l ,  l.kptXU]/ 

p l ( I - -  2 p l ) ,  

p rovided  Pl  # 0.5. E qua t i on  (1) in the  text follows f rom the fact 
tha t  the  indexing  of alleles is arbi t rary.  

N o w  suppose  tha t  Pl  = 0.5. T h e n  St x l  + S E X  2 = 0 has  a 
so lu t ion  for x 1 in t e rms  of  x 1 if and  only if r ank  [S 1, $2x2] 
= rank  (S1)= n -  2. If p~ = 0.5 then  the rows of SI are such 
tha t  Sit1)= 25Z]~=1pjSuj) where Suj  ) is the j t h  r o w  of $1. 
The  e lements  of  the  vector  S 2x  2 m u s t  satisfy the  same con-  
straint .  The  result  is tha t  we m u s t  have  ~ t< , ,o . , , *  1)&P,,Xz,, = O. 
Given  this  cons t ra in t ,  a so lu t ion  is t hen  Xlk = C -- 2 ~ . 1,kPz XU, 
k = 2, . . . ,  n, where  c is an  arb i t rary  cons tant .  Again,  since the  
indexing  of alleles is arbi trary,  equa t ions  (2) and  (3) follow. 

X2n X34 . . . X3n 

- - P 2  0 . . .  - - P 3  

( t0n- -P2)  0 . . .  - - P 3  

- - P 2  P*  "" " (Pn - - P 3 )  

0 . . .  - - P 3  

X(n - lIn ] " 

- - P n - 1  

- - P n - I  

- - P n - 1  

(On --Pn- 1/ 

The  equa t ions  S 1 x x + S 2 x 2 = 0 in the case of  four  alleles 
permits  a un ique  solut ion for x 2 in te rms  of x 1 as 
x 2 = - $ 2  I S l x l , i . e . ,  

4] = - -  P3 (P4--P2)  P3 0 - - P l  1 X24 

3 2 - -P2 (P4 - -P3 Pl  - - P l  I_X l*J 

The  solut ion is xl, . = [2pl + 2p, .  - 1) 2.1 + 2p l  Pk Xlk]/2pZp,, for 
k, l, m runn ing  t h r o u g h  all pe rmuta t i ons  of the  integers 2, 3, 4 and  
X xk, k = 2, 3, 4 are arbitrary.  Since the  indexing of alleles is arbi- 
t rary and  the  Y.j are all equal,  equa t ion  (6) follows. 

1 
- -  P n  - 2 - P .  - 1 

( 1 - -  2 p l  - - P n - 2 )  - - P n - 1  

- P . - z  ( 1 -  2Pl  - P , - 0  

- P n - 2  - P ,  1 
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