Theor Appl Genet (1988) 75:701-711

© Springer-Verlag 1988

Properties of components of covariance of inbred relatives
and their estimates in a maize population *

P. L. Cornelius

Departments of Agronomy and Statistics, University of Kentucky, Lexington, KY 40546-0091, USA

Received February 30, 1987; Accepted October 23, 1987
Communicated by A. R. Hallaver

Summary. Properties of three parameterizations, de-
noted as the C-model, D-model and Q-model, for covari-
ances of inbred relatives under assumptions of no link-
age or epistasis are explored and compared. Additive
variance in an inbred population with inbreeding coeffi-
cient F, 6% = (1 + F) 6%, where 63 is additive variance in
a panmictic population, if Q-model parameters Q. and
Q,, are both zero. Conditions sufficient for this to hold
are presented in terms of gene frequencies and dominance
contrasts (homozygotes vs. heterozygotes). Some other
properties and potential uses of estimates of components
in the models are also discussed. Estimates of compo-
nents in the D-model and @-model were calculated from
a maize (Zea mays L.) study from which estimates of
components in the C-model were previously published.
Of particular interest were the covariance (Q, ) of effects
of alleles at complete homozygosity with “inbreeding de-
pression effects”, the covariance (D) of additive effects at
panmixia with inbreeding depression effects and the
within-locus variance (D, alias Q,,) of inbreeding de-
pression effects. Estimates of Q. , D,, and D, were small
and nonsignificant in most cases. For ear height in the
second year of the study, D, appeared to be a major
component. In some cases, results were obtained which
had contradictory implications (negative D, coupled with
positive @, or D,, and positive D, coupled with negative
a2). A negative estimate of one or the other of ¢} or ¢%
was obtained in one of the two within-year analyses for
every character. Problems in getting realistic results were
thought to be owing to excessive multicollinearity among
the coefficients of the components in the expectations of
the covariances of the kinds of relatives included in the
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study. Implications for future studies of this kind are
discussed.
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Introduction

A general model for genetic variances and covariances of
inbred relatives with dominance and two-locus epistasis
contains an inordinately large number of terms and, with
linked loci, depends on usually unknown recombination
frequencies (Weir and Cockerham 1977). Consequently,
practical application must employ models derived under
simpler assumptions. Parameterizations for the covari-
ances of inbred relatives under assumptions of no link-
age, no epistasis and random mating equilibrium in an
original noninbred population from which the inbred
relatives were derived have been given by Cornelius and
Dudley (1975, 1976), Cockerham (1983), Wright and
Cockerham (1986), and Cornelius and VanSanford
(1988), the latter two papers developing the same model,
but with differences in notation and method of deriva-
tion. Any of these models may be readily extended to
include terms owing to joint dominance effects of loci and
additive x additive epistasis as described by Cockerham
and Matzinger (1985) in a theoretical study of response to
selection under selfing. Cockerham and Matzinger also
briefly discuss some issues concerning estimation of co-
variances for prediction purposes and put out an appeal
for “more experimental information on these issues”.
Cornelius and VanSanford (1988) showed that the covari-
ance components are not all estimable if the experimental
study involves only progenies derived by self-fertilization.
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Cornelius and Dudley (1976) gave estimates of param-
eters in their model applied to data from a broadbase
maize (Zea mays L.) synthetic population inbred for
several generations by selfing and full-sib mating. Objec-
tives of this paper are to present estimates of param-
eters in the models of Cockerham (1983) and Cornelius
and VanSanford (1988) (or equivalently, of Wright and
Cockerham 1986) obtained from the data of Cornelius
and Dudley (1976) and to present some theoretical results
concerning properties of parameters in these models. The
models used by Cornelius and Dudley (1975, 1976),
Cockerham (1983), and the model developed by Corne-
lius and VanSanford (1988) will be referred to as the
C-model, D-model and Q-model, respectively, the names
chosen because the C-model employs a parameter
denoted as C, the D-model contains parameters D, and
D, and the Q-model contains parameters denoted as Q,,,
Q_xy and Qxx'

Relationships of parameters in the models

Definitions and relationships of parameters in the covari-
ance component models are shown in Table 1. All of the
quadratic components of covariance are first defined for
individual loci and then summed over loci.

Q-model parameters @, and Q,, were developed by Corne-
lius and VanSanford (1988) as nonnegative quadratic forms in
vectors of contrasts y and x, respectively, and Q,, as a bilinear
form. Let Q,;. Q,,; and Q_; denote the contributions of the i*"
locusto Q,,, Q.,, and Q.. , respectively. If there are n alleles, 1,
I,,..., I, at the i'* locus, and 9, denotes the genotypic value of
genotype I;1,, then vector y for the i™ locus consists of the
n(n —1)/2 contrasts among homozygotes, y;, = gy, — g (G < k).
Similarly, x consists of the dominance contrasts (homozygotes
vs. heterozygote), X;, = g;; + gu. — 29,4 (j < k). Expressions for
Q,,i> @,y and @, in matrix notation are given in the Appendix.
When j >k, for convenience we will define y;, = — y,; and
X;i = X;;, but these quantities contribute only once, not twice, to
vectors y and x, respectively. The expressions for Q, , 0,, and
Q. in Table 1 follow from the structure of the matrices involved.
Q. is the variance of X , = 3., p;x;,, Q,,, is the variance of
Va=ZuxP; Ve = G — 2; P; 955> and Q_ , is the covariance of %,
and j,.. In addition to Q. , 63 and p? are also owing to domin-
ance and, for completeness, expressions for these parameters in
term of the x’s is also given (Table 1). The expression for o2
follows from expressions for the dominance deviations (d;,)
given by Kempthorne (1969).

For later use, let us define the degree of dominance (Com-
stock and Robinson 1948) of I; over I, as a;, = x;,/y,, , which is
positive (negative) if I; is dominant over (recessive to) I,. By this
definition, a;; = X, )/y,; = — aj.

Properties of Q__ (alias D,)

Cornelius and VanSanford (1988) showed that the additive vari-
ance in an inbred population obtained by a regular system
of inbreeding beginning with an initial panmictic popula-
tion is given by o, = [(1+ F)2]1 Q,, — (1— F) Q, + [(1 — F)¥/
20+ FQ,,. I Q.. =0Q,, =0 then ¢} =0,/2 and o2, =

Table 1. Definitions and relationships of parameters in models
for covariances of inbred relatives

0-model (Cornelius and VanSanford 1988)

Genotypic Vik =gkk—gjj’xjk=gjj+gkk_29jk’
contrasts: g; = genotypic value of i* locus genotype I, I, .
Quadratic Q. =2 2n izk - ~A2‘], Qxy =22l Fu T
functions:

ny =2 2%Px J72k9 ﬂgo =2, f2/4
op =X [Xupi (Ri — X _/2)

+ 2 3k PPy~ Ry — X+ %)%
where £, = Zj;tkpjxjks X, =24l %gs

Vo =224l Vik

C-model (Cornelius and Dudley 1975)

Genotypic =g+ (1— 6jk)(och + gy + djk)
value: + 3By + %)
where 0, =0if j #k,
Sy = 1 if homozygosity is a result of
identity by descent,
S, = 0 otherwise.
Qanratic 03 = X M Pk Uois My = Ziﬂio(i)’
functions: C =23, 3 P rs Xopics
o =2 i P % Op = X 2,’ 2 PP dj;k'
Relationship o3, =Q,,,pu2 =p%,C=0,-0,,
to gmodel: 52 — (9, —20,,+0,,)/2, 03 = 3.
Relationship 0% =20% +4D, + D,, u% = H,
to D-model:

2 2 2 2 _ 22
C =203 +Dy),04=05,00=0.

D-model (Cockerham 1983)

Genotypic

value: Gjo = B+ %+ o+ dy.

Quadratic i =%, Sepor, 05 =Y, Zj PPy d,?k,
functions:

Dy =33 % des
]-v)z =2 2P dl%k — (X di)’s
H =%, dkk)z-

Relationship 0% =(Q,, —20Q,,+ 0,,)/2, 03 = 63,

to@model  p, _(0,—0.)2D,=0... H=4.
Relationship o3 =0%,03 =0%,D, =0.5C — o2,
to C-model:

D,=0L—-2C+20i, H=y2.

Wright and Cockerham (1986) Notation for Q-model

Genotypic

value: Same as D-model.

Quadratic o =3 Zem oy +dy ) — b dkk)ZL

functions: g\ = 5, (S e 20+ dig) g — (i P din)?],
63, D¥and H* same as D,, D, and H in D-model

Relationship a3 =Q, .04y =0Q,,, 05 =05,

to Q-model: D;‘ . Qxx’ H* = ﬂfo‘




(1+F)Q,,/2=(1+ F)o%. If Q,, =0 then it must also be true
that @, = 0. Furthermore, 9, =0 if and only if @,,; = 0 at all
loci. Therefore, situations which give Q. ., = 0 are of particular
interest.

Whatever the number of alleles per locus, Q_, is zero if there
is no dominance at the i* locus. When there are only two alleles
perlocus, Q...=p, p»(p, — p,)® x%,. Clearly, no dominance and/
or p, = p, = 0.5 at every locus are the only circumstances that
will give Q.. = 0 if there are only two alleles at all loci.

With more than two alleles at a locus, however, other situa-
tions which give Q,.; = 0 can occur. It is shown in the Appendix
that Q. ., = 0 if the £, are all equal and this further implies that

X = [2 Zl<m(l,m¢j) PiPm Xpm—(1 _2Pj) Zl%j,kpl xkl]/pj(l —2Pj)
(0

for some choice of j for which p; # 0.5, all k # j and x,,, and x;,
within the brackets are arbitrary. The notation I,m # j should
be understood to indicate that neither ! nor m is equal to j and
1 # j, k indicates that [ is not equal to j or k. It is also shown in
the Appendix that Q_; =0 if

xjk:c_221$j,kplxkl ]

for some choice of j such that p; = 0.5, all k # j, where c is an
arbitrary constant and x,, for /,m # j are such that

Zl<m(l,m$j)plpmxlm=0' 3

It can be shown by direct substitution that if (1) holds for
some choice of j for which p; # 0.5, then it also holds for all other
choices of j for which p; # 0.5 and (2) and (3) also hold for any
other choice of j for which p; = 0.5. (Note that, if more than two
alleles exist, then there cannot be more than one choice of j for
which p; = 0.5.) Conversely, if (2) and (3) hold for some choice of
J for which p; = 0.5, this is sufficient to assure that (1) holds for
all other choices of j. Suppose, for the moment, that p; # 0.5 for
some choice of j. Then, if @, ; = 0, x;, is given by (1), but, since
Xjx = Xy, X is also given by (1) with subscripts j and k inter-
changed if p, # 0.5 or by (2) with subscripts j and k interchanged
if p, = 0.5. To illustrate the expansion of (1), (2) and (3),letn =5
alleles, j = 2, k = 3. Then (1) gives X3 = [2(p P3 X153 + D1 Py X14
TP1PsX1s+ PaPaXsat PaPs X35+ PaPsXas) — (1= 2p,) (P, %45
+P4X34 + Psx35)l/p,(1—2p,) provided p, #0.5 and also
Xa3 = X33 = [2(P1P;X12 + P1PaXes + P1PsXes + PaPy%os
+PaPsXas + PaPsXas) —(1—2p3) (py X1+ PaXas + psxys)l/
ps(1—2p,) provided p;#05 If p;=05 then (2) gives
X33 =X3,=C—2(p; X1, +PsXy4 +P5Xx,5) and the constraint
(3)is py1paXyp + PiPaX1a + P1PsXys + P2PaXzs + P2PsXas
+p4Dsx,5=0. Example 1 in Table 2 gives a set of hypothetical
values for the g;, and x;, which give Q, ;=0 if p, =p, =01,
p; =02, p, = ps = 0.3. The hypothetical values represent only
one out of an infinite number of possibilities which will give
Q... = 0, given the gene frequencies and genotypic values of the
homozygotes (g;;).

An important consequence of (3) is that, if one p; = 0.5, and
Q. = 0, then among the x,,, (for [, m # j), provided they are not
all zero, there must exist both positive and negative values, i.e., one
or more heterozygotes must be such that the favorable allele is
dominant, but one or more other heterozygotes must be such that
the unfavorable allele is dominant.

Populations synthesized by the intermating of homozygous
lines provide important special cases in that, if one supposes that
each parent line contributes a different allele to the population,
then the gene frequencies are known. If n lines contribute equally
to such a population, then the p; are all equal to 1/n. In such a case
(1) reduces to

=2 XysjuXul/n —2). @

X =L Eicmames Xim —
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Example 2 in Table 2 gives a hypothetical example which gives
Q.. =0 with five alleles all having frequency 0.2. The %, are
obviously all equal and equation (4) is always satisfied if the alleles
are equally frequent and the x, are all equal for all j and k (j #k).
Example 3 in Table 2 has this property.

Another interesting special case is where only one allele
(the j™, say) shows dominance (or recessiveness) in combination
with other alleles, all other alleles behaving additively when in
combination with one another. In this situation, x;, # 0, but
X, =0 for all k,1# j. It is shown in the Appendix that in this
situation Q_, can be zero only if p; = 0.5 and it then follows from
(2) that the x;, must be all equal for k # j. Example 4 in Table 2
has this structure.

In cases of three or four alleles Q_,; = 0 requires constraints
which are not necessary with higher numbers of alleles. With
three alleles with all p; # 0.5, (1) requires that

Xp=p(1—-2p)w, (5

for j,k and ! running through all permutations of the integers
{1,2,3}, where w is an arbitrary constant. This may be a reason-
able possibility if all p; < 0.5. However, if any p; > 0.5, it would
require both positive and negative dominance contrasts at the
given locus. Equation (5) implies that if there are three alleles
with p, = p, = p; = 1/3, then it is not only sufficient, but neces-
sary, that x,, = x;3 = x,3. Equation (5) further implies that,
provided all p; # 0.5, if any x; =0 then Q, ; cannot be zero
unless all x; = 0 (i.e, all gene action is additive). If p; = 0.5 for
a particular choice of j then (2) and (3) only admit solutions of
the form x; = x; = c and x,; = 0 for k, I # j. Populations con-
structed from three-way crosses using homozygous parents pro-
vide an interesting application if we suppose that each of the three
parents contributes a different allele to the population. If popula-
tions are developed from each of the three possible three-way
crosses, Q. ., cannot be zero in all three populations unless all gene
action at the i™ locus is additive.

It is shown in the Appendix that if there are four alleles, then

Qxxi =0if
Xim = [2p, +2p, —1) W+ 2Pj17k xjk]/zplpm (6)

for j, k, | and m running through all permutations of the integers
{1,2,3,4}and w = X; = £, = X, = X,,. To find a solution which
satisfies (6) it is sufficient to choose {j, k, I, m} to be a particular
permutation of {1, 2,3, 4}, choose arbitrary values for x,, x; and
Xjm» PUt w = £.; and compute (6) letting k, I, m run through all
permutations of the subset of three integers obtained from
{1,2,3,4} by deleting the integer chosen for j. It can be shown
by direct substitution that if (6) holds for one choice of j under
all permutations of k, ! and m, then it also holds for all other
choices of j. Also, £.; = £, is easily manipulated algebraically to
give

Xz = [Py(Xg — X3) + P Ot — X)) /(0 — P;) (7

provided that p; # p,. If p; = p, then @, = 0 will require that
Xy — Xp) + P (X — X3) = 0. If p,+p,, =05 then (6) re-
duces to X, = p; py X /PP Consequently, if p, =p, =p; =p,
=025 then Q=0 requires x;,=Xx3,, X;3=X,, and
X4 = X,5. Finally, if, for some choice of j, x;, =0 for all k # j,
then (6) shows that all x;,, = 0. Thus, if there are four alleles and
one of them is such that it does not show dominance (or
recessiveness) in combination with any of the other alleles, then
Q..; = 0 if and only if all gene action at the locus is additive. It
is clear from (5) that this also holds for n = 3, but it does not
necessarily hold for n > 4.

Both Q.. and ¢} are nonnegative quadratic functions of x
vectors for the various loci. As has been noted, it is possible,
though perhaps unlikely, for Q_; to be zero even if vector x is not

xxi
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Table 2. Hypothetical examples with five alleles which give Q

xxi

Examples 1 and 2

Example 1 above diagonal; 0, ,=0if p, =

Example 2 below diagonal; Q,.; =0 if all p; = 0.2.

xxi

Genotypic values® (g;,)

pr=01,py3 =02, p,

=ps=03.

Dominance contrasts® (x;,)

Allele 1, I, I I, I Allele I, I, I, I, I

I, 24 39 57 71 79 I, - —6 —18 —-22 —14
I, 46 48 66 84 92 I, -20 - —12 —24 —16
I 64 66 72 92 108 I -32 —12 - —16 —24
1, 70 84 90 96 120 1, -20 —24 —12 - —24
I 76 96 108 120 120 I -8 —24 —-24 —24 -
Examples 3 and 4

Example 3 above diagonal; Q,; =0 if all p; = 0.2.

Example 4 below diagonal; Q... =0if p, =05, p, + p3 + p, + ps = 0.5.

Genotypic values® (g;,) Dominance contrasts® (x;,)

Allele I, I, I I, I Allele I, I, I, I I

I, 24 48 60 72 84 I, - —24 —24 —24 24
I, 48 48 72 84 96 I, —24 - —24 ~24 —24
I 60 60 72 96 108 I, —24 0 - —24 —24
I, 72 72 84 96 120 I, —24 0 0 - —24
I 84 84 96 108 120 I —-24 0 0 0 -

* Addition of any constant to the genotypic values and multiplication of the genotypic values and the dominance contrasts by any

constant also gives Q.. =0

zero. On the other hand, o7, cannot be zero unless x is zero at all
loci. Is it possible (or likely) for Q.. to be larger than a3? This
appears to be a difficult question to answer in multiple allelic
situations, but with two alleles at the i*™ locus, the contribution
of the i™ locus to olz, is o = p3pix?,. Comparing this to
Quxi =P1 72 (Pl l’z) x12: it is apparent that Q,,; and ¢7; are
equal if PPy =0y = =1 —4p, p, which is satisfied if either
piorp,is(1+1/ f)/Z 0. 7236 Q... will be the larger if either
P, or p, exceeds this value and o2 will be the larger if both p, and
p, are less than 0.7236. When Q_,; = o2, both are equal to
0.64x%,. Set Q,,./o% =r. Then p, = 0.5 {1+ [r/(r + 42}, p, is
the same expression with a reversal of the + sign, and the
absolute value of p; — p, is [r/(r + 4)] /2 Thus, if there are only
two alleles per locus and r = Q. /a3, then [r/(r +4)]}/? might be
viewed as an estimate of the “average” absolute difference in
gene frequency between dominant and recessive alleles.
Cornelius and Dudley (1976) noted that, with two alleles
per locus, (3 pgx*/3pgy*)'/* where p=p,, q=p,, and the
sums are over loci, gives an estimate of average degree of
dominance. In Q-model notation, this can be expressed as
[(Q..—4 aD)/ny]” % In the case of two alleles per locus, 62 = H
(ahas n2), and in such a situation presumably the best estimate
of o, for use in this formula or the previous formula for » will be
obtained by combining the terms in these components in the
expectations of the empirical covariances used for estimation.

Properties of O,

Any expression for the covariance of inbred relatives must, ex-
cept under very special conditions, contain a component which

includes the contribution of the products of the x’s and the y’s.
D, serves that purpose in the D-model and C does so for the
C- model Both of these are functions of @, along with another
component and @, itself may be the more interesting compo-
nent since it alone measures the association of x and y values.

If we characterize the quantity d,, — 3, p, d,, (where d,, is
the dominance deviation of I, I, at panmixia) as the within-locus

1nbreed1ng depression effect” of the i™ allele, then Q., is the
covariance of effects of alleles at complete homozygosity w1th the
inbreeding depression effects of those alleles. The correlation of
such effects is g, = Q,,/(Q,, @,,)'"*. This same quantity is the
correlation of the X, with the §,,.

Q. is necessarxly zero if Q,, =0, but Q. may be zero
even if 9, #0. If there are only two alleles at the i™ locus
Qi =P1P2(P1 — P2) X12V12 = P P2 (Py — Py) 44, V3, Wwhich s
zero if any one of the following hold: (1) there is no dominance
(x;, =0), (2) there is overdominance with homozygotes hav-
ing equal value, (g,, = g,, # g, resulting in Yiz= 0,x,, #0),
(3) gene frequencies are 05 (p, —p, = O) Q,,i is positive if the
dominant gene is the more frequent and is negative if the domi-
nant gene is the allele of lesser frequency. Clearly, both positive
and negative values of Q. could occur at the various loci even
if all loci have similar directions and degrees of dominance. Thus
Q.,=0 would not necessarily imply any of the situations which
make @, =

With respect to a single locus with two alleles the correlation
0.,i(0,,:Q.)"? is +£1 with the sign determined by the sign of
0,,i- We might loosely interpret g,,, as a sort of average of these
correlations for segregating loci (“loosely” because pooling the
components for all loci and then computing the correlation is
not equivalent to a simple averaging of the correlations for the



loci separately). A positive value of g, would be expected if
dominant alleles tend to be more frequent than recessive alleles.

If there are two alleles at all loci with the same pair of values
for p, and p, (p, # p,), a situation for which one could easily
develop a population to satisfy, then the correlation g, is
+ 3%, ¥1,/(Ey3, S x2,)1/? where the sums are over loci and the
sign is determined by the sign of p, — p,. If p, > p,, ¢4, may be
interpreted as the correlation of the x contrasts with the y con-
trasts. The correlation can still be either positive or negative
because, for the i'® locus, x,,y,, = a,, ¥3, which is negative if I,
is dominant over I, . Using a population constructed from two
homozygous parents represented in different dosages, this statis-
tic might give some insight into which parent carries more of the
alleles which are dominant (or at least more of the dominant
alleles at loci which have large dominance effects). Presumably,
if one wishes to do this, one should choose p, and p, so as to
maximize the absolute value of p,p,(p, —p,). This gives
2, =0510.29. This is closely approximated in populations
derived from backcrosses where p, = 0.75 and p, = 0.25 or vice
versa. If populations derived from reciprocal backcrosses are
studied, 0, should be of the same absolute magnitude in both
populations, but should differ in sign.

With more than two alleles, expansion of @, = 3, p, X, 7,
gives

Qxyl' = Zj<kpjpk(pj_pk)xjkyjk ()
+ Zj<k<lpjpkpl [ij(xkz - le) + th(xkz - xjk) + Vu (sz - xjk)]'

The quantities p; p, (p; — p,) X ¥ are all zero if gene frequencies,

are all equal. As in the case of only two alleles, these quantities
are positive (negative) if the dominant allele of the pair (I;, ;) is
the more (less) frequent. All terms in Q,; are zero if there is no
dominance (x, all zero) or if homozygotes are all of equal value
(vj all zero). The difference x,; — x5 = (gux — 95;) — 2(g — 952)-
This is a contrast of the double substitution of allele I, for allele
I, in the homozygous state compared to 2 single substitutions in
the presence of allele I,. The other differences x;; — x; and
Xy — Xy are structured similarly with a permutation of sub-
scripts. The second sum of terms in (8) is zero if such quantities
are all zero. Q. could be small (or even zero) through the
cancellation of positive and negative quantities. Furthermore, as
in the case of two alleles, positive and negative @, ; values could
cancel in the summation over loci which gives Q, .

Clearly, unless one has prior knowledge of the number of
alleles and their frequencies, little can be concluded from an
experimentally estimated value of @, , particularly if the es-
timate is of small magnitude. A large positive Q,, might suggest
that the dominant alleles are present in fairly high frequency (but
not extremely high because Q_ ; approaches zero as the frequen-
cy of any allele at the i* locus approaches unity). Negative Q.
would suggest that such alleles are in low frequency.

Other properties of parameters in the models

If Q.. =0, then D, = 0, but it is possible to have D, = 0, even if
Q. #0. Let dy;=(Q,,; — Qu/2 and g = (Qyy — 20,
+ Q,,)/2 denote the contributions of the i locus to D, and criv ,
respectively. With two alleles per locus and letting x,, = a,, y,,
wecanwrite d,; = (1/2)p, p,[1 — (0, — P2 a1;]1 (0, — P2 a1, ¥1a-
If the quantity 1 — (p, — p;)a,, = 0 then the additive effects (at
panmixia) are zero and d,; is zero as is also ¢. This requires
overdominance equal to a,, = 1/(p, — p,) and is unlikely to oc-
cur except in hypothetical examples. The d; values for the vari-
ous loci can be positive or negative so that D, can also be zero
as a result of cancellation of positive and negative values when
summed over loci. Of interest, therefore, are the situations which
yield d,; > 0 and those where d,; < 0. In particular, d,; > 0 in

705

two situations: (1) p, > p, and 0<a, < 1/(p; — p,) and (2)
pi < pyand —1/(p, — p;) < a,, < 0. Thus, if the dominant allele
is the more frequent, d,; will be non-negative unless there is
overdominance of sufficiently large magnitude (degree of domi-
nance greater in absolute value than the reciprocal of the differ-
ence between gene frequencies). The exception includes the case
where g,, = ¢,, # ¢,,- A negative d,; will always occur if the
recessive allele has the higher frequency. (In this regard, note that
any situation which gives a negative Q, , must necessarily give a
still more negative d ;).

If or to what extent these properties of D, hold in multiple
allelic situations is not easily assessed since d,; involves all of the
[n(n —1)/2]* possible products of the form x4y, (j < k,1<m)
and all squares and pairwise products among the x; . It is always
true, however, that D, < (1/2)Q,, with equality only if Q,, =0,
which will require that D, = @,, = 0(but D, =0 or @, = 0does
not imply that Q_, = 0).

Though it is not likely to occur in any experimental or
breeding population, % (= Q,,) = 0 would imply that effects of
genes at complete homozygosity are all zero. For the i locus, in
D-model notation for gene effects (Table 1), we would have
20; + (d;; — h) = Owhere h; = 3, p,d;;. In this very hypothetical
situation, Q,, = 203 and D, = — 4. Thus, — ¢ places a lower
limit on D, , which can be reached only if all homozygotes are of
equal value,

In any case, D, and Q_, (alias D,) are highly dependent on
gene frequencies and their usefulness would be greatly enhanced
in situations where one knows the number of alleles and their
frequencies a priori (as in the case of a population constructed
by the mating of homozygous lines). In the absence of such
knowledge, estimates of D, and Q_, may, if the estimates are
large, give some information (though that information is far
from clear) concerning the genetics of the character under in-
vestigation. If the estimates are small, they are virtually nonin-
formative, since a myriad of circumstances can operate to make
them small.

The correlation of inbreeding depression effects of alleles
with additive genetic effects at panmixia is given by
@i = D /(D, 6%/2)*"*. Another correlation which may be inter-
esting is that of additive effects of alleles at panmixia with effects
of those alleles at complete homozygosity, i.e,
€. = C/(20% 6%)"". For a single locus with two alleles, both of
these correlations are &1 with the sign of the first depending on
whether the quantities (p, — p,)a,, and 1 — (p; — p,)a,, are of
like or unlike sign, and the sign of the second determined by the
sign of 1 — (p, — p,)a,,. A negative value of 1 —(p, —p,)a,,
results only if the dominant allele is the more frequent and there
is overdominance of sufficient degree that |a,,| > 1/|p, — p,|.
These same conditions will cause 1-—(p, —p,)a,, and
(p, —p,)a,, to differ in sign. Furthermore, they will always
differ in sign if the recessive allele is the more frequent. As with
the correlation g,, which we have previously discussed, we
might cautiously regard a computed correlation as a sort of
average of these correlations for separate loci.

xyi

Estimates of D,, Q,, (alias D,) and Q,,
in a maize population

Results of an experiment evaluating various kinds of
inbred relatives derived by selfing and full-sib mating in
a broad-base maize population (Synthetic O.P.) were re-
ported by Cornelius and Dudley (1974, 1976). Experi-
mental material and methods were described previously.
A path diagram of the mating scheme by which families
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of progenies were produced is given in the 1976 paper
which also gives expressions in C-model parameters for
the genetic covariances among the progenies derived by
selfing and covariances of the selfed progenies with the
progenies derived by sib-mating. Covariances among the
sib-mated progenies were derived in C-model parameter-
ization by Cornelius and Dudley (1975). (The coeffi-
cient of C in the covariance of generation-1 uncle and
generation-2 nephew is erroneously given as 0.625. The
correct value is 0.0625.) Families were allocated to sets in
a split-plot arrangement and Cornelius and Dudley
(1976) presented estimates of o2, u2, o2 and o3 com-
puted by applying the method described by Cornelius
and Byars (1977) to family within set, error and, for char-
acters where individual plants were measured, plants
within plots mean square and cross product matrices.
The purpose of the present analysis is to present the
estimates of D, Q.. (alias D,) and Q,, (Table 3) from
these data. These cstimates and their standard errors
were computed by simple transformations of the previous-
ly computed solutions. For example, if we let @ = (62,
u,C,0%, 03y, then D, =K®, where K =(0,0,0.5,
—1,0), and V(D,)= KV (®) K’, where V (®) is the esti-
mated covariance matrix of @. The estimates of compo-
nents from the original study are also included in Table 3
for comparison with Dy, Q.. and Q,,.

Cornelius and Dudley (1976) reported that all charac-
ters except kernel weight showed significant hetero-
geneity of variance between years, which, however, was
not resolved with respect to whether it was genetic (i.e.,
genotype x year interaction), environmental or both. It
was not feasible with the available material to design the
experiment so that estimates of interactions of the qua-
dratic components of genetic covariance with years could
be easily obtained. Therefore, the estimates from years
combined are a sort of average for the two years, which
in some cases may be averaging estimates of unequal
parametric values.

The most striking results, in particular the large es-
timates of the dominance components 2 (alias 1) and
o2 for yield and the large estimate of u2 for plant and ear
height in 1971, have been previously discussed (Cornelius
and Dudley 1976). Of interest at present are the estimates
of Q.,, D, and Q.. Most of these estimates, when com-
pared with their asymptotic standard errors, were small
and could hardly be considered statistically significant. In
absolute value, Q,, exceeded 1.96 times its standard error
(the 0.05-level test criterion based on asymptotic normal-
ity of the estimates) only in the case of ear height in 1970.
However, this was accompanied by a negative estimate of
0..- If 0, = O, this implies that also @, = 0. It, there-
fore, makes sense to test the hypothesis @, = Q. =0, or
its equivalent in the C-model (62 = C =2¢3) or the
D-model (D, = D, =0). An approximate chi-square
(Table 4) computed from the parameter estimates and
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Table 4. Approximate chi-square tests of hypotheses concerning
covariance components

Year Chi-square® for test of hypothesis
Hy,: Hg,: Hy, and No
0,=0,,=0° pZ =65 Hpy,° dominance
Plant height

1970 041 0.82 0.82 0.82

1971 1.63 4.38* 5.59 19.60 **

Combined ¢ 2.18 6.52% 8.12%* 17.43 **
Ear height

1970 4.28 1.59 4.30 11.75*

1971 13.34 ** 11.34**  2560**  30.59**

Combined ¢ 9.39 ** 11.81**  1680**  3582**
Yield

1970 044 1.13 7.11 25.60**

1971 1.53 0.56 8.17* 42.26**

Combined ¢ 1.69 2.63 16.37**  75.78**
Moisture

1970 0.19 3.52 6.03 6.05

1971 3.55 0.68 9.03* 9.43

Combined ¢ 2.01 3.73 1249%*  12.26**

‘ Oil

1970 0.2t 1.85 2.63 3.66

1971 0.16 0.06 0.67 391

Combined ¢ 0.03 1.12 2.82 6.94
Kernel weight

1970¢ 201 0.15 2.15 217

1971°¢ 147 0.79 8.63* 8.7

Combined 027 0.77 2.53 2.63

*** Significant at p = 0.05 and 0.01, respectively

* Df of chi-square is 2, 1, 3, and 4 for the four hypotheses

® Equivalently, 62, = C = 267 in the C-model or D, = D, =0 in
the D-model

¢ Equivalently, p, = p, = 0.5 at all loci where there is dominance
¢ Cornelius and Dudley (1976) reported significant heterogeneity
between years not resolved as to whether it was genetic or envi-
ronmental

¢ C-model showed significant lack of fit to within-year data (Cor-
nelius and Dudley 1976)

their asymptotic covariance matrix indicated that the
hypothesis Q,, = Q,, = 0 was an acceptable hypothesis
in all cases except ear height in 1971 and in the analysis
with years combined. @, = @, = 0 implies that D, = 0.
Examined separately, D, and D, (alias Q.. ) (Table 3) were
also nonsignificant in all cases where Q,, = Q.. = 0 was
an acceptable hypothesis.

If there are only two alleles at all loci where there
is dominance, p2 = 5. Approximate chi-square tests
(Table 4) indicated that this hypothesis was acceptable in
all cases except plant and ear height in 1971 and in the
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combined analysis. Cornelius and Dudley (1976) also
tested this hypothesis, but they used a different criterion,
namely, by comparing goodness of fit of multiple-allele
and two-allele models. The conclusions rendered by the
two methods were consistent except for yield in the
combined analysis where Cornelius and Dudley found
the multiple-allele model to fit significantly better.
0., =0, =0 and pl = o} jointly imply that gene fre-
quencies are all 0.5 at loci where there is any dominance.
However, separate acceptability of these two hypotheses
does not necessarily imply that they are jointly accept-
able. Indeed, they were separately, but not jointly, accept-
able for yield and moisture in 1971 and years combined
and for kernel weight in 1971. Where the no epistasis
model gave a satisfactory fit (not the case for kernel
weight in 1971), separate, but not joint acceptance of the
hypotheses Q,, = Q,, =0 and p2 = o3 implies that the
data are consistent with either of two conclusions con-
cerning loci where there is dominance: (1) there are two
alleles per locus and gene frequencies are not 0.5, or (2)
there are multiple-alleles, but Q,, = @, = 0 (or at least
close enough to zero to escape detection). Either conclu-
sion is a distinct possibility, but the first would seem to be
the more likely, as it was previously made clear that gene
effects must satisfy severe constraints in order for Q_, to
be zero in multiple-allelic situations.

Synthetic O.P. is a composite of open-pollinated cul-
tivars and there is little reason to believe gene frequencies
are all exactly 0.5 even if such a hypothesis is statistically
acceptable. The hypotheses Q,, = Q.. =0 and u2 = o}
will always be jointly acceptable if there is no dominance
(or not enough to be statistically detectable). This is, ap-
parently, true for percent oil in both years and for mois-
ture in 1970. They will also be jointly acceptable if there
are two alleles per locus, but loci where there is domi-
nance with respect to effects on the character studied do
not have gene frequencies sufficiently different from 0.5 to
make Q. and/or Q,, sufficiently large to be statistically
detectable. This may be the situation for ear height in
1970.

For ear height in 1971, Q,, was the largest compo-
nent, Q. was negligible and D, was negative and signifi-
cant owing, of course, to the contribution of Q.. to D,.
However, a negative estimate was obtained for ¢ and
this is inconsistent with large values for Q. and u? . If the
negative o} is regarded as an estimate of a true value of
zero, this would imply that both g2 and @, must also be
zero which would further imply that all gene action is
additive. However, an additive model does not adequate-
ly model the variances and covariances (Table 4).

With two exceptions estimates of g,_, (Table 5), where
they could be computed, were of small magnitude. In
some cases estimates of g, and g, could not be com-
puted owing to a negative estimate of Q.. If this is re-
garded as an estimate of Q. =0, this implies that

Table 5. Correlations of effects computed from covariance com-
ponent estimates

Character Correlation
Year Qdos Qaco Qaa
Plant height 1970 —2.68 1.01 —2.38
1971 —-0.04 0.74 -0.70
Combined —-0.10 0.84 —1.58
Ear height 1970 -2 1.54 -2
1971 -0.02 045 —1.11
Combined —0.21 0.72 —1.11
Yield 1970 1.03 1.23 1.44
1971 —a -2 -2
Combined -2 -2 -2
Moisture 1970 —0.18 0.97 —0.44
1971 -2 1.42 -2
Combined -2 1.20 —=
Percent oil 1970 -2 1.04 —
1971 -2 1.08 -2
Combined —=2 1.02 —=2
Kernel weight 1970 0.28 0.69 —0.51
1971 2 1.32 -2
Combined 0.26 0.93 —-0.14

* Negative component in denominator

Q4e = 04a = 0. With one exception, estimates of g,,,
where they could be computed, were negative. Usually
they were more negative than g, . Estimates of g,_,
wherever they could be computed, were positive and gen-
erally large, but they were not as large for plant and ear
height (characters which showed inbreeding depression)
in 1971 and years combined as for some of the other
characters. Moisture and percent oil, for which a strictly
additive variance model gave an adequate fit (Cornelius
and Dudley 1976) gave results consistently suggesting
0sw = 1. No estimate of g,,, could be obtained for yield
in 1971 and years combined owing to a negative estimate
of a4 . The estimate of ¢2 for yield in 1970, though posi-
tive, was extremely small and it is quite probable that
0sw = 1.23 is spuriously large as a consequence. No at-
tempt was made to compute standard errors for the cor-
relations, but they are no doubt high, especially for g,,
where there is the greatest intercorrelation among the
estimated components involved.

The results perhaps shed more light on the problems
involved in attempting to estimate the quadratic compo-
nents than on the genetics of the population in which they
were obtained. The standard error of Q. seems in many
cases to be large relative to the apparent magnitude of the
component being estimated, suggesting that the set of
relatives used does not have nice properties for estimating
Q... This may be owing to multicollinearity in the expec-
tations of the mean squares and products. Cornelius and
Dudley (1976) suggested that the correlation of the coeffi-



cients of o2 and ¢} in the C-model for the covariances
among relatives evaluated in the experiment was suffi-
ciently high to result in difficulty in obtaining a realistic
separation of the variance attributable to ¢ and to o3.
Such a situation easily triggers negative estimates of one
or the other component because it is quite possible for an
overallocation of variance to one component to be easily
rectified (in terms of adequacy of fit of the model to the
data) by negative allocation of variance to the other.
A negative estimate of one or the other of these two
components (usually of a2, but of ¢ in one case, namely,
yield in 1971) was obtained in one of the two within-year
analyses for every character. A similar multicollinearity
problem (if this is indeed the cause) exists regardless of
whether the C-, D-, or @-model is used, since all of these
models have the same set of coefficients for a2 and there
always exists a linear combination of the other coeffi-
cients in the D- or Q-model which is equal to the coeffi-
cient of ¢ in the C-model.

In the Q-model the correlation of the coefficients of
0., (alias D,) and a3 is the same as the correlation of the
coefficients of 62 and ¢2 in the C-model. Thus, the prob-
lem of separating o3 from ¢ (which is a function of Q. )
appears to be, more fundamentally, a problem of separat-
ing 62 and Q... A high correlation of coefficients of 63
and Q. in the Q-model manifests itself in the D-model as
a high degree of multicollinearity involving the coeffi-
cients of 63, 6%, D, and D,.

Statistical joint significance of the hypotheses
Q., = 0., = 0 and x4 = ¢} without significance of either
hypothesis when tested alone can also be a consequence
of multicollinearity. It is analogous to a multiple regres-
sion problem where one or the other of two highly corre-
lated regressor variables is needed in the model, but
neither explains a significant amount of variation when
added to a model which already contains the other.

The lesson to be learned is that anyone who wishes to
devise a study to estimate these components would be
well advised to determine whether the set of relatives to
be used provide covariances with desirable properties for
estimation of the components or at least of the desired
linear combinations of components. Besides predicting
response of highly inbred progenies resulting from selec-
tion of progenies in earlier generations of inbreeding,
which could be done quite well from their study, Corne-
lius and Dudley (1976) attempted to use the estimates of
the components to predict improvement in response of
outbred performance resulting from selection of inbred
performance and vice versa. Cockerham and Matzinger
(1985), using an extension of the model to include
additive x additive epistasis, made some theoretical pre-
dictions of response, in terms of outbred performance to
selection based on performance of selfed progenies. They
also briefly discussed whether estimated response to se-
lection should be done with the needed variances and
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covariances directly estimated or indirectly estimated
through the use of estimated components. It is to be
remembered that estimation of a covariance as a linear
combination of estimated components, where the combi-
nation is considerably different from any of the experi-
mentally obtained covariances used in estimating the
components, presents a situation very much analogous to
extrapolation of a regression model to a point outside the
range of data to which the model was fit (or, more precise-
ly, outside the hyperellipse which contains the experi-
mental data points). Such projections can be notoriously
inaccurate even when the model is correct. Predictions of
outbred performance based on inbred performance or
vice versa involve linear combinations of ¢ and C (or
equivalently, ¢4 and D, in the D-model, or Q,,, Q,, and
Q.. in the Q-model) for the numerator and, for the latter
case, 63, as the only genetic component involved in the
denominator of the relevant heritability (b,, of Cocker-
ham and Matzinger 1985). These are going to require a
precise estimate of ¢%. The experimental results of Corne-
lius and Dudley (1976), considered again here, suggest
that satisfactory separation of ¢3 and o2 (or of Q,, and
¢3) is the greatest difficulty to be surmounted in estimat-
ing the components from data on inbred relatives. From
selfed progenies alone these components are not estima-
ble at all (Cornelius and VanSanford 1988). In the Corne-
lius and Dudley (1976) study, inclusion of families of
non-inbred full sibs which were collateral relatives with
the sib-mated and selfed inbred progenies did not seem to
satisfactorily alleviate the problem. Inclusion of unilater-
al relatives would give covariances which depend only on
0%, C and o2 (or 65, Dy, and D, in the D-model, or Q,,,,
Q., and @, in the Q-model) and would help to separate
these components from o2 and g2 (alias FI). Most impor-
tantly, if an estimate of g2 free of g} is needed, the inclu-
sion of noninbred relatives whose covariance depends
only on ¢ would be highly desirable.
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Appendix

The quadratic forms @, Q. and Q_;, derived by Cornelius
and VanSanford (1988) expressed in matrix notation are
YR PRy, yRPTx and x'T'P, Tx, respectively, where
P, = Diag(p;). In the j™ row of matrix R, the element which
multiplies y,, in the product Ry is 6;, p, — 6, p,, where 5,, =1
if j =m and is zero otherwise (§; similarly defined). Also, the
element in the j™ row of T which multiplies x,, in the product
Txis Ty, = 6P+ 0;mP1 — 2P, P Vector Ry is a vector of
additive effects of alleles in a completely homozygous population
and vector Tx is an expression for the dominance deviations (at
panmixia) of homozygotes, d,;, expressed as a deviation from a
mean defined as h; = 3°;p;d;;. Consequently, @, is equivalent to
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a2 in the C-model and Q,, is an alternative expression for D, in
the D-model, but Q. is unique to the Q-model. @, is, in a sense,
the covariance of dominance deviations of homozygotes at pan-
mixia with the additive effects of the same alleles in a completely
homozygous population.

Another interpretation of 0., 0, and Q_ is obtained by
using the relationships j,, = — y,, and x,,, = x,,, and then noting
that the k' element of Ry is J,, = 3., p; Y and the k*" element
of Tx is X, — X, p, X,. Consequently, X, and d,; differ by an
additive constant and @, and @, are shown to be the variances
of the 7, and %, respectively, and Q_, is their covariance.

Q... =0ifand only if Tx = 0. But Tx = 0if and only if the
X;are all equal. Thus, to determine the conditions under which
Q.. =0, it is sufficient to consider any set of n—1 linearly
independent contrasts among the £.;. Let us consider the con-
trasts e;=X;—-X,, j=1,...,n—1 Collecting the e; into a
vector, we can write e=Sx where the element of the
(n —1) x n(n —1)/2 matrix § which multiplies x,, (! < m) in the

product S x is p,, (6;; — 6,)) + p;(8;, — 9, ). If the elements x,,, in

x are sorted by m within [, then

x= [X;3 X3 Xip-y X n X33+ Xam-1)  Xaa
Py Ps --o Pu-y Wo—p) O ... O — P2
pp 0 ... O =P P3s-- Po-r (P2

S = 0 p ... 0 — P ps ... O — P,
0 0 P — P 0 ... p — P2

Thus, @, ,; = 0 for any x which satisfies the set of homogeneous

linear equations § x = 0. Obviously, x =0 (the “trivial” solu-
tion) is always a solution, i.e., Q,; = 0 if there is no dominance
at the i™ locus.

If n=2, then Sx =(p, — p,)x;, so that no dominance
(x4, = 0) or equal gene frequencies (p, — p, = 0) are the only
conditions which will give @, ., = 0. However, if n > 2, § always
has more columns than rows and S x = 0 always has a nontrivial
solution for x.

If we express Sx as [§,S,]x=8,x,+S,x, where
X; = [X15,%135-005 Xy, ] and x, = [X53, X545 .05 X 1),]’> then
S x = 0 implies that x, = S, ' S, x, provided that p, # 0.5 (S, is
singular if p, = 0.5).

P (1=2p,—p,) —Ps3
Py - D (1—=2p,—p3)
St 1 : : :
p(1=2p) | /1 — P2 —P3
Py — P2 —Ps3
Py — P2 —P3

and, with algebraic manipulation,

X =R cmtme 1y PrPmXim — (L= 2p1) 21 w21 Xul/
pi(1—=2py).

provided p, # 0.5. Equation (1) in the text follows from the fact
that the indexing of alleles is arbitrary.

Now suppose that p, =0.5. Then S, x, +S,x, =0 has a
solution for x, in terms of x, if and only if rank {S;, S, x,]
=rank (S,)=n—2. If p, = 0.5 then the rows of S, are such
that Sy, =2X52;p;Sy; where S, is the j™ row of §,.
The elements of the vector S, x, must satisfy the same con-
straint. The result is that we must have 3., 4. m+ 1) 21 Pm Xim = 0.
Given this constraint, a solutionis then x,, = ¢ — 23,1 . 21 Xu>
k=2,...,n, where ¢ is an arbitrary constant. Again, since the
indexing of alleles is arbitrary, equations (2) and (3) follow.

Consider again the equation S, x, + S, x, = 0 and suppose
that x, = 0. Then the equation S x =0 reduces to $; x, =0. A
nontrivial solution for x, exists if and only if S, is singular. But,
since p; # 0 (else the number of alleles is n — 1 rather than n), S,
is singular only if p, = 0.5. Thus, if the only heterozygotes which
show dominance are those which involve the allele I, , then Q
can be zero only if p, = 0.5.

With three alleles, equation (1) gives

xxi

X1z =[2p,p3x,5 — (1 —=2py)p3X,35] /0, (1 —2p,y)

=p32p, =1+ 2p) x50, (1-2py)

=ps(1 = 2p3)x5/p (1= 2p))
and, similarly, x,; = p, (1 — 2 p,) x,,/p, (1 — 2 p,), with x,, arbi-
trary, as a solution for x which gives Q_,; = 0. In general, we see

that x;/x; = p,(1 - 2p))/p,(1—2p,) for j, k, | any permutation
of the integers 1, 2, 3. This result establishes (5).

X34 X3n ce Xgens 1S
0 ... -p —Pu-a
0 ... —Ps3 —Pn-y
Pa Pu—P3) - —Pun
0 ... =ps . u—P-d)

The equations S; x; + S, x, = 0 in the case of four alleles

permits a unique solution for x, in terms of x; as
x,=—28, '8 x,,le,

X23 0 — P2 —ps | 7P ps a—PD| |*12
Xl =—|ps Pa—P2) P3 p 0 - P X131~
X34 P2 —P2 (Pa—p3) 0 pn -n X1a

The solution is x,,, = [2p, + 2p,, — 1) X, + 2 p, pe X1 1/2p, P, fOT
k, I, m running through all permutations of the integers 2, 3,4 and
X1x» k = 2,3,4 are arbitrary. Since the indexing of alleles is arbi-
trary and the X; are all equal, equation (6) follows.

—Pu-2 —Pn-1
—Pn-2 ~Pa-1
(1-2p,—p,_3) —Pu-y
= Pn-2 (1=2p—pu-v)
—Pn-2 —DPn—1
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